
at the same time, but is generally 
ignored. A filter is applied to the phase 
image (High-pass Hamming Window 
Filter) on a 64 × 64 matrix to reduce 
aliasing artifacts. A new phase mask is 
created which, when added to the 
magnitude image, creates the suscep­
tibility image. In order to obtain a 
better interpretation, minimum inten­
sity projections (minIP) are used [6]. 
During post-processing the phase con­
trast image is filtered to reduce unde­
sirable low spatial frequency compo­
nents, leaving the high frequency field 
variations. The phase mask created 
can be ‘positive’ or ‘negative’. The 
phase mask is multiplied using the 
original magnitude image to produce 
images that maximize the negative 
intensity of the mineralization of the 
parenchyma. Minimum intensity pro­
jection (usually from 2 to 4 slices) is 
used to display the processed data [1].

MAGNETOM ESSENZA 1.5 Tesla MRI 
unit with the following settings:  
TR 49 ms, TE 40 ms, FA 15°, number 
of slices 60, slice thickness 2 mm, 
acquisition matrix 256 ×157.

Susceptibility-weighted imaging 
takes advantage of the loss of signal 
intensity created by alterations in 
a homogenous magnetic field; these 
disturbances can be caused by sev­
eral different paramagnetic or dia­
magnetic substances. The loss of sig­
nal intensity in the T2*-weighted 
sequence is a result of the difference 
in the precession rate of the spins 
[5].

The susceptibility image is obtained 
during the acquisition process by 
combining the magnitude and phase 
of the images. Routine MR images 
are magnitude images where the sig­
nal’s intensity is converted to a gray 
scale. Phase information is obtained 

Introduction

Susceptibility-weighted imaging 
(SWI) is a sequence that utilizes a 
phenomenon in which the phase and 
change in the local magnetic field of 
the tissues are proportional to one 
another, provided the echo time is 
constant [1]. It uses magnitude and 
phase images, as well as a summa­
tion of these in a three-dimensional 
gradient echo sequence with flow 
compensation [2]. It offers very high 
sensitivity for visualizing calcium, 
non-heme iron (ferritin) and hemo­
globin degradation products (deoxy­
hemoglobin and hemosiderin) [3, 4].

Initial experience

By means of a series of cases we  
will illustrate the clinical usefulness 
of SWI with certain neurological  
conditions. The studies reviewed 
were performed in the Neurological 
Scanography Magnetic Resonance 
Imaging Service using a Siemens 

Susceptibility-Weighted Imaging.  
Initial Experience
José Luis Ascencio L.1; Tania Isabel Ruiz Z.2

1 Escanografia Neurologica, Medellin, Colombia 
2 Universidad CES, Radiology, Medellín, Antioquia, Colombia

1A

Patient with bilateral frontal hemorrhagic contusion. (1A) T2w axial; no lesions observed. (1B) Axial gradient echo shows a low-signal 
lesion in left frontal lobe with a slight blooming effect. (1C) SWI magnitude, two bilateral frontal hemorrhagic contusions are observed.

1

1B 1C
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The method is highly sensitive for pur­
poses of visualizing venous circulation, 
blood products and iron content, and 
is also useful for evaluating the vascu­
larization of tumors and for identifying 
brain tissue that has been compro­
mised by a stroke, vascular dementia 
or trauma, and can also be used in 
functional imaging [1, 4, 7-9] (Fig. 1).

Hemorrhage

Oxyhemoglobin, formed by the bind­
ing of an oxygen and an iron atom 
contained in the Hem group, is a dia­
magnetic substance. When the oxygen 
is released from the iron atom it forms 
deoxyhemoglobin, which is paramag­
netic because of its unpaired electrons. 
Metahemoglobin is produced when 
deoxyhemoglobin oxidizes, making it 
less stable; in this state there is little 
susceptibility effect and thus it is more 
easily visualized in T1w images.  
Hemosiderin is the final product of the 
degradation of hemoglobin when it 
degrades within phagocytic cells, and 
is a highly paramagnetic [3, 4, 10] 
substance. Diamagnetic substances 
produce a weak local magnetic field, 
while paramagnetics generate a stron­
ger magnetic field that leads to a 
signal de-phase and therefore a signal 
reduction in the T2*w sequence [4]. 
The ferritin produced by different  
metabolic processes also has para-
magnetic characteristics and is  

associated with Parkinson’s disease, 
Huntington’s disease and Alzheimer’s 
disease [9-11]. 

Trauma

In the detection of diffuse axonal 
damage, this approach is more sensi­
tive than conventional imaging for 
detecting microhemorrhages in the 
deep and subcortical white matter, 
which can be obscured in computed 
tomography (CT) scans [12, 13]. It is 
three to six times more sensitive than 
gradient echo images for detecting 
the number, size, and location of the 
lesions associated with this clinical 
status of the patient [1, 13-16]. It is 
equally useful in detecting brain-
stem lesions, subarachnoid and intra­
ventricular hemorrhage, as well as 
other types of hemorrhagic lesions 
of different origins [17] (Fig. 2).

Calcifications

Calcium is also diamagnetic and can 
lead to changes in the susceptibility 
image [12, 18]. SWI differentiates 
iron from calcium based on their dia­
magnetic or paramagnetic character­
istics in the filtered-phase image. 
Calcium appears brilliant in this latter 
image, while the hemorrhage and 
its derivative products have low signal 
intensity. This differentiation is 
important when dealing with neuro­
degenerative and metabolic diseases, 
trauma, and tumors [12, 18]. 

Vascular malformations

Venous blood causes non-homogene­
ity in the magnetic field due to the 
paramagnetic effect of the deoxygen­
ated blood due to T2* reduction, 
depending on the oxygen saturation, 
the hematocrit and the condition of 
the erythrocytes; thus, the deoxyhe­
moglobin present in venous blood 
allows for the visualization of the lat­
ter [4] as well as the phase difference 
between the vessels and surrounding 
structures [19]. The susceptibility 
image provides contrast similar to that 
of a functional image (BOLD blood 
oxygen level-dependent). 

SWI is more sensitive in the detection 
of vascular structures that are hidden 
to T2* and low-flow malformations 
that are not detected by MR angiog­
raphy, such as venous development 
malformations, telangiectasias and 
cavernomas, as well as vascular abnor­
malities and calcifications related to 
Sturge-Weber Syndrome, since it is 
not affected by flow velocity or direc­
tion [20-24]. In dural sinus thrombo­
sis they show venous statis and col­
lateral flow, as well as early detection 
of venous hypertension before infarcts 
or hemorrhages occur [7, 8, 19] 
(Figs. 3–5). 

2A 2B 2C

Patient with diffuse axonal lesion. (2A) T2w axial; no lesions observed. (2B) Low-signal, puntiform lesions. (2C) SWI minIP 
makes the multiple microhemorrhagic lesions more apparent.

2
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3A 3B 3C

Venous development anomaly. (3A) Axial gradient echo; anomaly not visible. (3B) Axial contrast-enhanced image shows right 
frontal venous development anomaly that is more evident in the susceptibility image (3C).

3

4A 4B

Left frontal cavernoma. (4A) Axial proton density-weighted image; (4B) minIP SWI. 4

5A 5B 5C

Left parietal arteriovenous malformation. (5A) Axial PDw show serpinginous images with absence of flow signal. (5B) mIP SWI. 
(5C) MIP TOF shows the AVM and the cortical drainage vein.

5
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Brain tumors

This approach provides information 
that supplements T1 with contrast for 
detecting margins, internal architec­
ture, hemorrhage and vascularization 
of a tumor that are not visible with 
conventional sequences. This aids in 
differentiating between a recurring 

7A 7B 7C

Metastatic melanoma. (7A) T2w axial; large mass displacing the midline, with major edema and hypointense zone due to 
hemorrhage in the medial portion. (7B) Magnitude image, (7C) MIP SWI shows a greater hemorrhagic component of the mass, 
on the contralateral side, as well as intraventricular hemorrhaging.

7

6C

Hemorrhagic metathesis. (6A) T1w axial gadolinium-enhanced, (6B) T2w axial show a left parietal mass with heterogeneous 
enhancement, perilesional edema and mass effect on the lateral ventricles. (6C) MIP SWI shows hypervascularity and hemorrhage 
in the interior of the mass.

6

6B6A

tumor and post-operative changes. 
The use of susceptibility imaging 
before and after the administration 
of gadolinium can differentiate areas 
of enhancement of the vessels. 
Because of its suppression of cerebro­
spinal fluid, it enhances contrast 

between edema and normal tissue, 
similarly to what is provided by 
FLAIR, thus facilitating the detection 
of space-occupying lesions [4, 7, 25] 
(Figs. 6–8).

8A 8B 8C

Oligodendroglioma. (8A) T1w axial gadolinium shows mass with enhanced foci and a cystic component, (8B) MIP SWI right parietal 
hypervascular mass with increased relative flow (8C).

8
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9A 9B 9C

CVD with hemorrhagic transformation. (9A) Axial T2w, (9B) gradient echo in patient with left parietal hemorrhagic infarct with 
surrounding edema and hemorrhage. (9C) SWI makes the greater hemorrhagic component more obvious.

9

10A 10B 10C

Right MCA aneurism with bleeding. (10A) Axial T2w, (10B) TOF demonstrating aneurysm with bleeding, (10C) SWI aneurism with 
greater bleeding than that shown in the T2w sequence.

10

Cerebrovascular disease

The susceptibility image can be used 
together with diffusion images to 
detect the hypoperfused region, the 
presence of hemorrhaging within the 
infarct (which could affect the treat­
ment), detect acute thrombus and 
predict the likelihood of hemorrhagic 
transformation and hemorrhagic 
complications during and after throm­
bolysis treatment, as well as micro­
bleeding due to amyloid angiopathy 
and lacunar infarcts in patients  
with hypertensive encephalopathy 
[19, 26-28] (Figs. 9, 10).

Vascular occlusion can change the 
susceptibility of the tissue as a 
result of reduced arterial flow and 
an increase in the accumulation  
of deoxygenated blood, which 
increases the amount of deoxy-
hemoglobin that can be detected  
by SWI [27, 29].

Neurodegenerative 
illnesses

Certain disorders, such as Parkin­
son’s Disease, Huntington’s Disease, 
Alzheimer’s, multiple sclerosis  
and amyotrophic lateral sclerosis 

(Lou Gherig’s Disease) present with 
abnormal iron deposition, which can be 
detected and quantified using suscepti­
bility imaging [11, 30-33]. SWI can 
show chronic demyelinating plaques 
with iron depositions that are hidden in 
conventional sequences, as the iron con­
tent makes the lesions more visible. It 
can also determine the iron content of 
the nucleii of deep gray matter that can 
also be observed in patients with multi­
ple sclerosis, as well as the perivenular 
distribution of the demyelinating lesions 
[30].
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