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Introduction
Magnetic Resonance Imaging (MRI)  
is a powerful diagnostic, prognostic 
and therapy assessment tool due  
to its versatile nature as compared  
to other imaging modalities, as MRI 
allows the user to probe and measure 
various kinds of information (T1, T2, 
B0, diffusion, perfusion, etc.). How-
ever, MRI has the drawback of being 
slow compared to other diagnostic 
tools, and is generally qualitative, 
where the contrast between tissues, 
rather than absolute measurements 
from single tissues, is the primary 
means of information that is used  
to characterize an underlying  

pathology. While this information  
has proven extremely valuable for 
diagnosis, prognosis, and therapeutic 
assessment, the lack of quantifica-
tion limits objective evaluation,  
leads to a variability in interpretation, 
and potentially limits the utility  
of the technology in some clinical 
scenarios.

To overcome this limitation,  
significant effort has been put into 
developing quantitative approaches 
that can measure tissue proprieties 
such as T1 and T2 relaxation times. 
Quantifying tissue proprieties allows 
physicians to better distinguish 
between healthy and pathological  

tissue [1] in an absolute sense, makes 
it easier to objectively compare differ-
ent exams in follow-up studies [2],  
and could be more representative of 
the underlying changes at the cellular 
level [3, 4] than standard weighted 
imaging. Quantitative imaging is  
crucial in the assessment of disease 
settings presenting subtle features 
such as cardiac diffuse fibrosis [5], 
iron [6] or fat deposition in the liver 
[7]. Additionally, there are various  
clinical settings in which multiple  
features such as T1, T2, diffusion, etc. 
add up synergistically to drastically 
improve the information for diagnosis, 
prognosis and/or therapeutic 
assessment. 

Conventional parametric mapping approaches. Example of conventional T1 (above) and T2 (below) mapping techniques.  
(1A) Several fully sampled images are acquired one after the other with different inversion time (for T1) or echo time (for T2).  
(1B) An exponential fitting is performed using the multiple values of each voxel and the relaxation or decay time is the one that 
provides the best fit. 
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While quantitative imaging has been  
a long-standing goal of the MR com-
munity, a drawback encountered in 
early conventional quantitative imag-
ing was the reduced time efficiency 
compared to qualitative imaging.  
Early conventional approaches for T1 
and T2 mapping involved measuring 
one parameter at a time. These tech-
niques relied on the acquisitions of 
several images, each with one specific 
acquisition parameter that varies for 
each image while the others were  
kept constant (Fig. 1A). The obtained 
images were subsequently fitted with 
a mathematical model to estimate the 
one parameter of interest, for example 
the relaxation time (T1) [8] or the  
time of signal decay (T2) [9] (Fig. 1B). 
This process had to be repeated for 
each parameter of interest. The need 
for keeping all except one sequence 
parameter and signal state constant 
and the limitation of assessing one 
parameter at a time made these 
approaches extremely time-inefficient 
because of the prolonged scan time 
and thus not suitable for a clinical 
environment where interscan motion 
can render such approaches infeasible. 
In recent times, several approaches 
have been proposed to shorten the 
acquisition time [10–13] or to provide 
combined T1 and T2 measurements 
[14–18] within a single acquisition. 
However, major barriers remain  
to clinical adoption, most notably  
a simultaneous need for rapid and 
accurate quantification.

To overcome the common drawbacks 
of quantitative imaging, Magnetic  
Resonance Fingerprinting (MRF)1  
[19–21] has been recently developed. 
This technique aims at providing 
simultaneous measurements of  
multiple parameters such as T1, T2, 
relative spin density, B0 inhomogeneity 
(off-resonance frequency), etc., using 
a single, time-efficient acquisition. 
MRF completely changes the way 
quantitative MRI is performed with  

an entirely different approach from 
that of conventional techniques. 
Instead of performing an acquisition 
with all but one sequence parameter 
constant, MRF relies on deliberately 
varying acquisition parameters in  
a pseudorandom fashion such that 
each tissue generates a unique signal  
evolution. It is possible to simulate  
signal evolutions from first principles 
using different physical models for  
a wide variety of tissue parameter 
combinations, which are collected 
together in a database called diction-
ary. After the acquisition, a pattern 
recognition algorithm is used to find 
the dictionary entry that best repre-
sents the acquired signal evolution of 
each voxel. The parameters that were 
used to simulate the resulting best 
match are then assigned to the voxel. 
This process is analogous to the fin-
gerprinting identification process 
used by forensic experts to identify 
persons of interest. The acquired  
signal evolution is unique for each 
tissue and can be seen as the  
collected fingerprint that has to be 
identified. The dictionary is equiva-
lent to the database where all the 
known fingerprints are stored, 
together with all the information  
relative to each person. In the  
forensic case, each fingerprint points 
to the feature identification of the 
associated person such as name, 
height, weight, eye color, date of 
birth, etc. Similarly, in the case  
of MRF, each fingerprint in the  
dictionary points to the MR related 
identification features of the associ-
ated tissue such as T1, T2, relative 
spin density, B0, diffusion, etc. After 
the acquisition, the fingerprint  
contained in a voxel is compared 
with all the entries in the dictionary. 
The dictionary entry that best 
matches the acquired fingerprint  
is considered a positive match,  
meaning that the tissue represented 
in the voxel has been identified.  
All the known parameters relative to 
that fingerprint can then be retrieved 
from the dictionary and assigned  
to the voxel. The uniqueness of the 
different signal components and the 
accuracy with which the dictionary  
is simulated are two crucial compo-
nents for the correct estimation of 
the tissue parameters.

This paper attempts to describe the 
basic concepts of MRF and illustrate 
some clinical applications.

Acquisition sequence
Standard quantitative MR imaging 
approaches require several acquisi-
tions, each one of which constantly 
repeats the same acquisition pattern, 
such as radiofrequency excitation 
angle (flip angle, FA), repetition time 
(TR) and gradient patterns, until all 
required data in the Fourier domain 
(also called k-space) are obtained. 
Each image is then reconstructed 
using the Fourier transform and a 
nonlinear fitting process is applied  
to each voxel. With MRF, instead, the 
flip angle, the TR and the trajectory 
(Fig. 2A, B) vary in a pseudorandom 
fashion throughout the acquisition; 
when implemented properly, this 
generates uncorrelated signals for 
each tissue, providing the unique  
fingerprints that are used to recognize 
the tissue. The initial implementation 
of MRF [19] was based on a balanced 
steady-state free-precession (bSSFP 
or TrueFISP) sequence because of  
its sensitivity to T1, T2 and off- 
resonance frequency, and because 
the steady-state signal generated by  
this sequence has been thoroughly 
studied [22]. The FA (Fig. 2A) varies 
in a sinusoidal fashion to smoothly 
vary the transient state of the  
magnetization, ranging from 0°  
to 60° and from 0° to 30° alterna-
tively, with a period of 250 time 
points, or images. On top of this  
signal, a random variation is added 
to induce differences in the time  
evolutions from tissues with similar 
parameters. After each half period 
(250 images), 50 flip angles are set 
to 0° to allow for signal recovery.  
The TR variations, instead, are based 
on Perlin noise [23] which ranges 
from 9.34 ms to 12 ms. These are 
only examples of how the parameters 
can be randomly varied. Other ran-
dom patterns have been tested [19, 
24] showing that MRF is not limited 
to one specified set of parameters.

An inversion recovery pulse is  
played out at the beginning of the 
acquisition sequence to enhance T1 
differences between tissues (Fig. 2B). 
For each TR, a heavily undersampled 

1 The product is still under development and not  
 commercially available yet. Its future availability  
 cannot be ensured. As this is a research topic in  
 predevelopment, all results shown are preliminary  
 in nature and do not allow for generalizations or  
 conclusions to be drawn. Product realization and  
 features therein cannot be assured as the product  
 may undergo futher design iterations.

  Technology

MAGNETOM Flash | (65) 2/2016 | www.siemens.com/magnetom-world 13



Sequence parameters Dictionary

Maps

Matching

Voxel fingerprint

Acquisition sequence

Undersampled images

Series of 
varying 

FA

T1

T2

M0

B0

Series of 
varying 

TR

Excitation 
pulses

Slice  
selection 
gradients

Trajectory

Readout

Flow chart of the MRF framework. (2A) Example of variable FA and TR used for a TrueFISP acquisition. (2B) Sequence diagram 
showing the excitation pulses, slice selection gradients, readout and k-space trajectory for each TR; (2C) Example of three  
undersampled images acquired in three different TR. (2D) Examples of four dictionary entries representing four main tissues: 
cerebrospinal fluid (CSF) (T1 = 5000 ms, T2 = 500 ms), fat (T1 = 400 ms, T2 = 53 ms), white matter (T1 = 850 ms, T2 = 50 ms), 
gray matter (T1 = 1300 ms, T2 = 85 ms); (2E) Matching of a voxel fingerprint with the closest entry in the dictionary, which 
allows to retrieve the tissue features represented by that voxel; (2F) intensity variation of a voxel across the undersampled 
images (fingerprint); (2G) parameter maps obtained repeating the matching process for each voxel.
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image is reconstructed (Fig. 2C). It 
can be noticed how the base image 
series are not useful by themselves, 
but each voxel contains a signature 
fingerprint that will be used later  
on for the matching (identification). 
The total number of images acquired 
(also referred to as ‘time points’) can 
vary from acquisition to acquisition, 
ranging from 1000 [19] to 2500  
[21] as function of the image resolu-
tion, the undersampling ratio, the 
matching approach used, etc. In  
most cases, we have used a variable-
density spiral trajectory [25] designed 
to have a minimum time gradient 
and zero moment compensation  
for the acquisition. For example, we 

have successfully used a trajectory 
for a 128 x 128 matrix size that 
requires one interleaf to fully sample 
the center of k-space and 48  
interleaves to fully sample the outer 
region of k-space. In the case of a 
256 x 256 matrix, a trajectory requir-
ing 24 interleaves to fully sample the 
inner region and 48 interleaves to 
fully sample the outer region can  
be used instead. Within each TR,  
one interleaf is acquired and used to 
reconstruct an image (or time point). 
The interleaf in the following TR  
is then rotated by 7.5° (≈ 2π/48) 
compared to the previous one.

The MRF framework is not only  
limited to a TrueFISP-based acquisi-

tion, but can be virtually applied to 
any kind of sequence. As an example, 
the MRF framework has been applied 
to a steady-state precession sequence 
(FISP) [20] to avoid the banding arti-
facts that can appear in wide field-of-
view scans or in a high-field-strength 
scanner. The FISP sequence is still sen-
sitive to T1 and T2 components  
but is less sensitive to off-resonance 
frequency. This is caused by the  
unbalanced gradient within every TR 
which results in the signal to be the 
sum of the spins within a voxel, mak-
ing the sequence immune to banding 
artifacts. The unbalanced gradient, 
though, leads the FISP sequence to 
have a shorter transient state com-
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pared to the TrueFISP. For this reason, 
the pseudorandom FA variation needs 
to be generated slightly differently 
than in the case of the TrueFISP 
sequence, in order to keep incoher-
ence between the signal and under-
sampling artifacts and to be able to 
identify the underlying fingerprint. 
The FA variation is thus generated 
based on sinusoidal variation in which 
the maximum reached FA for each  
half period randomly changes, ranging 
from 5° to 90°. The TR variation is 
always based on a Perlin noise pattern 
which ranges from 11.5 ms to 14 ms. 

Dictionary generation
The dictionary can be seen as the heart 
of the MRF framework; it is the data-
base that contains all physiologically 
possible signal evolutions that may  
be observed from the acquisition and 
that makes it possible to recognize the  
tissue within each voxel. MRF, like the 
forensic fingerprinting identification 
process, is effective only when a  
database large enough to contain all 
the potential candidates is available.  
In MRF, the dictionary is generated  
on a computer using algorithms that 
simulate the spin behavior during  
the acquisition and thus predict the 
realistic signal evolution. In case of a 
TrueFISP-based acquisition, the Bloch 
equations [26] are used to simulate 
the various effects of the acquisition 
sequence on the spins, given a set of 
tissue parameters of interest (Fig. 2D). 
The information that can be retrieved 
with MRF is thus related to how and 
what physical effects are simulated.  
In the initial stages of development, 
MRF includes the simulation of T1, T2 
and off-resonance, but more tissue 
features can be simulated and 
extracted, such as partial volume [19], 
diffusion [27] and perfusion [28].

A critical aspect of the dictionary is its 
size: to ensure the identification of any 
possible tissue parameter present in 
the acquisition, a wide combination  
of T1, T2 and off-resonance frequency 
need to be simulated. A standard  
TrueFISP dictionary with the parameter 
ranges as shown in Table 1 leads to  
a total of 363,624 possible combina-
tions and includes the parameter  
values that are commonly found in  
the human body. The computation of 

such a dictionary for 1000 time 
points takes about 2.5 minutes on a 
standard desktop computer using a 
C++ based script and reaches 2.5 GB 
of memory size. A further increase in 
the dictionary size and/or resolution 
would increase the accuracy of the 
obtained maps at the expenses of an 
increase  
in the reconstruction time and  
memory requirements [19].

The simulation of a FISP acquisition  
is computed differently compared  
to the one described above. Since  
the FISP acquisition requires the  
simulation of multiple isochromats  
at different frequencies, which are 
then combined together, the simula-
tion process through Bloch equations 
can be time consuming. An alterna-
tive time-efficient simulation is  
the extended phase graph (EPG)  
formalism [29], where a spin system 
affected by the sequence can be  
represented as discrete set of phase 
states, ideal to simulate the signal 
evolution of spins strongly dephased 
by unbalanced gradients. The FISP 
sequence is less sensitive to off- 
resonance effects compared to the  
TrueFISP acquisition, so the corre-
sponding dictionary includes only  
the T1 and T2 relaxation times  
(Table 1) as the parameters of inter-
est. This leads to 18,838 dictionary 
entries that can be computed in 
about 8 minutes on a standard  
desktop computer, and that gener-
ates a dictionary of about 1.2 GB.

Regardless of which sequence is 
used, the dictionary needs to be 
computed only once beforehand.  
It can then be used on the scanner, 
where it is used to reconstruct each 
MRF acquisition acquired with the 
sequence parameters that were 
simulated.

Matching
After the data acquisition, the  
fingerprint of each voxel (Fig. 2F)  
is normalized to unit norm and  
compared with all the normalized 
dictionary entries to identify the  
tissue in a given voxel (Fig. 2E). The 
simplest version of the matching is 
performed by taking the inner prod-
uct between the voxel signal and 
each simulated fingerprint signal; the 
entry that returns the highest value 
is considered to be the one that best 
represents the tissue properties,  
and the respective T1, T2 and off- 
resonance values are assigned to  
the voxel (Fig. 2G). The relative spin 
density (M0) map, instead, is com-
puted as the scaling factor between 
the acquired and the simulated  
fingerprints. The inner product has 
been demonstrated to be a robust 
operation and is able to correctly 
classify the tissues even in case of 
low SNR due to undersampling or 
even in the presence of a limited 
amount of motion artifacts [19]. 

This approach has also the potential 
of distinguishing different tissue 
components present within a single 
voxel (partial volume effect) thanks 

TrueFISP FISP

Parameter Min 
value

Max 
value

Step  
size

Min 
value

Max 
value

Step  
size

T1 (ms) 100 2000 20 20 3000 10

2000 5000 300 3000 5000 200

T2 (ms) 20 100 5 10 300 5

100 200 10 300 500 50

200 1900 200 500 900 200

Off- 
resonance 
(Hz)

-250 -190 20

-50 50 1

190 250 20

Table 1: Ranges and step sizes used for the dictionary creation in case of a TrueFISP 
sequence (left) or FISP sequence (right).
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to the incoherence between different 
signal evolutions. The fingerprint (S) 
of a voxel containing different tissue 
can be seen as the weighted sum (w) 
of the different components (D):  
S = Dw. It has been shown [19] that, 
if the different components are known 
a priori, the appropriate inverse  
solution of the previous equation – 
(D)-1S = w, where (D)-1 represents the 
pseudoinverse of D – will provide the 
weight of each different tissue for 
each voxel [19,31].

The pattern recognition algorithm  
is performed on the scanner for every 
acquisition, so it is crucial for the 
clinical usefulness of the MR frame-
work that this operation is performed 
in a reasonable time. While the direct 
matching using the inner product is 
accurate, it can take up to about  
160 seconds to match a 2D slice of 
128 x 128 base resolution, 1000 time 
points with a dictionary counting 
363 624 entries. Similarly it takes 
about 30 seconds to match a 2D 
image with 256 x 256 voxels,  
1000 time points and 18,838 diction-
ary entries for a FISP reconstruction. 

The matching can be potentially 
accelerated by compressing the dic-
tionary either in the time dimension 
or in the parameter combinations 
dimension, thus reducing the total 
number of comparisons that need  
to be performed. It has been shown 
[31] that the singular value decom-
position (SVD) can be applied to 
compress the dictionary in the time 
dimension and reduce the matching 
time by a factor of 3.4 times for a 
TrueFISP dictionary and up to a factor 
of 4.8 times for a FISP dictionary. The 
SVD-based dictionary compression 
has less than 2% of reduction in the 
accuracy of the estimated parame-
ters. In this approach, the dictionary 
is projected into a subspace of lower 
dimension spanned by the first 
25-200 singular vectors obtained 
from the SVD. The acquired finger-
print is projected onto the same  
subspace, and the matching is  
performed using the projected signal 
and the compressed dictionary. This 
framework reduces the number of 
calculations, thus reducing the final 
computation time despite the added 

operation of data projection on the 
subspace.

An alternative approach for reducing 
computational time for matching  
is by reducing the parameter combi-
nation dimension. A fast group 
matching algorithm [32] has been 
developed, where dictionary entries 
that have strong correlations are 
grouped together and a new signal 
that best represents the group is  
generated. The matching is thus  
subdivided in two steps; at first the 
acquired fingerprint is matched with 
the representing signal of each 
group, and only groups that return 
the highest correlation are kept in 
consideration. Then matching is  
used to find the best fit between the 
fingerprint and the remaining dic-
tionary entries for the assignment  
of the parameters. This algorithm 
reduces the matching computation 
speed of one order of magnitude 
compared to the SVD compression 
and two orders of magnitude  
compared to the direct matching 
with no significant loss in the quality 
of the match. Techniques such as  
this make it feasible to implement 
MRF in a clinical manner.

Undersampling and motion
In MRF, the obtained parameter maps 
are the result of a pattern recognition 
algorithm as opposed to conven-
tional reconstruction techniques, 
which allows MRF to be more robust 
to various image artifacts. This  
effect is strengthened by the random 
variation of FA, TR and trajectory 
which not only aim at differentiating 
the fingerprints from different tissues, 
but also aim at increasing the inco-
herence between the fingerprints. 
The matching can recognize the 
underlying signal evolutions even  
in low signal-to-noise or accelerated 
conditions as long as the noise or 
undersampling artifacts are incoher-
ent with the signal. Additionally,  
just like in forensic fingerprinting,  
a correct identification is possible 
even with the use of blurry or partial 
fingerprints, the MR counterpart is 
also capable of providing parametric 
maps without any residual motion  
artifacts in case of a fingerprint  
partially corrupted by motion [19].

Volunteer acquisitions
MRF acquisitions have been tested  
in volunteers in 2D brain, abdominal, 
and cardiac scans. All in vivo experi-
ments were performed under the Insti-
tutional Review Board guidelines and 
each subject signed informed  
consent prior to the data acquisition. 
The scans were performed on a 3T 
MAGNETOM Skyra system with a 
20-channel head coil or a phased array 
18-channel body coil plus spine coil. 
For the brain scans, the variable acqui-
sition parameters (FA and TR) were  
set as described above and 3000 time 
points were acquired; the FOV was 
300 x 300 mm, the slice thickness was 
5 mm and the matrix size was 256 x 
256. The acquisition time was 38 s for 
a 2D TrueFISP slice and 41 s for the 
FISP acquisition. The cardiac MRF 
scans were acquired using a modified 
pulse sequence with ECG triggering to 
restrict data collection to mid-diastole 
[35]. A total of 768 time points were 
acquired over a 16-heartbeats breath-
hold using a scan window of 250 ms 
with FOV 300 x 300 mm, slice thick-
ness 8 mm, and matrix size 192 x 192 
[35]. For the abdominal and cardiac 
imaging, the trajectory and acquisition 
protocols were adapted as described  
in references [21, 35] respectively.  
The dictionaries were computed as 
described above and SVD based 
matching was used for parameter 
estimation.

Figure 3 shows the maps obtained 
from volunteer scans in the brain  
(Fig. 3A), abdomen (Fig. 3B), and 
heart (Fig. 3C). Both FISP and TrueFISP 
MRF provide comparable high resolu-
tion multiparametric tissue maps.  
The FISP acquisition has the drawback 
of not providing the off-resonance 
information, but it has the advantage 
of being insensitive to banding artifacts. 
Therefore, FISP MRF is advantageous 
for body imaging, where the sharp 
susceptibility transitions and the need 
for a large field-of-view would lead to 
banding artifacts with a balanced SSFP 
acquisition. 

The values obtained with MRF maps 
are generally in good agreement with 
the standard mapping techniques  
[20] and with the literature value of 
tissue parameters [19, 24], as shown 
in table 2. It can be noticed, though, 
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Examples of T1, T2, relative spin density (M0) and off-resonance (B0) maps acquired in two volunteers with a TrueFISP and a  
FISP acquisition. (3A) Single 2D slice of a head scan. (3B) Single 2D slice of an abdominal scan. (3C) Single 2D slice of diastolic 
cardiac scan in short axis view. In the T2 and B0 map obtained from the TrueFISP acquisition, banding artifacts due to field 
inhomogeneity are visible (blue arrows). 
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Example of patient results. Quantitative T1, T2 and relative spin density (M0) maps obtained using the FISP protocol for brain 
[16] and abdomen acquisitions [20]. (4A) Maps of a patient with a brain tumor; (4B) 69-year-old patient with metastatic breast 
cancer. The metastasis (blue arrows) presents an increase in all tissue parameters, compared to the surrounding tissues.

4

4A

4B

T1 map T2 map M0 map

T1 (ms) T2 (ms)

Tissue MRF Literature MRF Literature

White matter 685 ± 33 [19] 608–756 [34, 40–42] 65 ± 4 [19] 54–81 [34, 40–42]

781 ± 61 [20] 788–898 [43] 65 ± 6 [20] 78–80 [43]

Gray matter 1180 ± 104 [19] 998–1304 [34, 40–42] 97 ± 5.9 [19] 78–98 [34, 40–42]

1193 ± 65 [20] 1286–1393 [43] 109 ± 11 [20] 99–117 [43]

Cerebrospinal fluid 4880 ± 379 [19] 4103–5400 [34, 40–42] 550 ± 251 [19] 1800–2460 [34, 40–42]

Liver 745 ± 65 [21] 809 ± 71 [44] 31 ± 6 [21] 34 ± 4 [44]

Kidney medulla 1702 ± 205 [21] 1545 ± 142 [44] 60 ± 21 [21] 81 ± 8 [44]

Kidney cortex 1314 ± 77 [21] 1142 ± 154 [44] 47 ± 10 [21] 76 ± 7 [44]

Skeletal muscle 1100 ± 59 [21] 1017 ± 78 [45] 44 ± 9 [21] 50 ± 4 [46]

Fat 253 ± 42 [21] 343 ± 37 [45] 77 ± 16 [21] 68 ± 4 [44]

Table 2: List of T1 and T2 relaxation times measured with MRF for different tissues and comparison with the value available in literature.
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that there is a mismatch in the values 
of CSF and fat. The CSF T2 discrepancy 
between MRF and literature value can 
be explained by through-plane motion 
of the fluid that was not taken into 
account in the dictionary simulation 
[19]. The fat T1 discrepancy, instead,  
is mainly due to the intentionally  
low T1 dictionary resolution (100 ms) 
for the range 100–600 ms used for  
that study [21].

The MRF efficiency is extremely  
high compared to traditional mapping 
approaches [19–21] as well as rapid 
combined T1 and T2 mapping methods 
like DESPOT [19, 36]. The high  
efficiency and accuracy of the MRF 
framework enable parametric mapping 
to be performed in a clinically relevant 
acquisition time without loss of  
information. In this way, multipara-
metric mapping can be translated  
to the clinical environment.

Patient acquisitions
The MRF framework has also been  
successfully tested on patients.  
Figure 4 shows the feasibility of brain 
and abdominal MRF in a clinical  
environment. Data were acquired 
with the previously described FISP 
acquisitions on patients with a brain 
tumor and breast cancer metastatic 
to the liver (Fig. 4). Longer T1 relax-
ation time can be observed in the 
metastatic lesions compared to the 
surrounding tissues. It has been 
shown in six patients with metastatic 
adenocarcinoma that the mean T1 
and T2 values in the metastatic  
adenocarcinoma were on the order 
of 1673 ± 331 ms and 43 ± 13 ms, 
respectively. Those values are signifi-
cantly higher than the ones of the 
surrounding tissues (840 ± 113 ms 
and 28 ± 3 ms, respectively) [21]. 
Recent studies investigate the possi-
bility of predicting response of tumor 

to treatment using tissue relaxation 
times; e.g. the T1 relaxation time  
can potentially be an indicator of 
chemotherapy response [35, 36]. 
Fast multiparametric mapping can 
thus open the path to the creation  
of a multiproperty space that might 
allow a deeper characterization and 
understanding of the conditions and 
evolutions of determined pathologies. 

Synthetic weighted images
It is also possible to retrospectively  
calculate and estimate ‘standard’ 
weighted images from the multiple 
parameter maps obtained from an 
MRF scan. Figure 5 shows an exam-
ple of T1-weighted and T2-weighted 
acquisition calculated from the FISP  
T1 and T2 maps of the volunteer and 
patient head scan shown above.

Conclusions
Magnetic resonance fingerprinting  
is a novel framework for MRI, where 
the pulse sequence design is not 
aimed at acquiring images, but at 
directly measuring tissue properties.  
In MRF, the sequence generates 
unique signal evolutions, or finger-
prints, for each different tissue and 
matches it with a set of theoretical  
signal evolutions to measure several 
tissue properties within a single  
acquisition. Once the tissue features 
are measured, it is possible to directly 
know several tissue-specific proper-
ties that can synergistically provide 
all the information to improve diag-
nosis, prognosis and/or therapeutic 
assessment. In this work, only two 
MRF implementations have been 
shown, but the MRF framework has 
the potential to allow more freedom 
in the sequence design compared to 
standard MRI sequences, since the 
parameters can be randomly varied. 
Thanks to this freedom, a whole new 
world of possibilities of acquisition  
and reconstruction strategies that 
can probe and measure new features 
have been opened up for our com-
munity to explore.

This paper focused on T1, T2, M0  
and B0 characterization, but the MRF 
is not limited to that. Several work 
are being performed to exploit the 
potential of MRF including: diffusion 

Synthetic generation of conventional images. Example of T1-weighted and 
T2-weighed images from a healthy volunteer and a patient with brain tumor, 
reconstructed starting from the T1, T2 and M0 maps obtained from the FISP MRF 
maps of Figure 3 and 4.

5

Healthy Volunteer

T1-Weighted

T2-Weighted

Tumor Patient
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[27], arterial spin labeling [28, 42, 43] 
and chemical exchange [44].

The pattern recognition nature of  
MRF makes the acquisition robust  
to artifacts like undersampling and 
motion, yielding high efficiency,  
accuracy and robustness that are  
critical for the successful integration  
of a multiparametric mapping tech-
nique into the clinical environment. 
Moreover, the increased efficiency  
and robustness to artifacts compared 
to standard MR imaging approaches 
could potentially reduce the time and 
thus the costs of MRI exams, making 
it more affordable and more competi-
tive in comparison to other imaging 
modalities.
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