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Introduction
Reducing the complexity and length 
of examinations has been a major 
direction of research in magnetic  
resonance imaging (MRI) in recent 
years. With the introduction of  
the Dot engines, the complexity of  
MR examinations could be reduced 
through automatization and guid-
ance, providing standardized and 
time-efficient workflows. Consider-

able effort has also been spent on 
developing methods to speed up  
data acquisition without degrading 
image quality. Accelerated imaging  
is a key factor to enable the visualiza-
tion of rapid physiological or contrast 
changes in dynamic imaging.  
Moreover, short scans reduce the  
risk of artifacts due to any kind of 
motion during the scan. A significant 

speed-up of data acquisition allows 
both respiratory and cardiac motion  
to be frozen while maintaining an  
adequate temporal and spatial resolu-
tion. This in turn results in a high- 
quality and robust examination even 
for uncooperative patients, since  
data acquisition may be performed in 
free-breathing. Furthermore, reduced 
scan time and a decreased number of 

Additional noise reduces the homogeneity in the image of the resolution phantom (1A), which can also be observed in the line  
plot along the dashed line. After transformation into a sparse representation using finite differences (1B), the homogeneity  
can be restored by denoising, i.e., setting all pixels below a threshold level (red line) to 0. After the image is transformed back to  
its original domain, the phantom is piecewise constant (1C).
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breath-holds improve patient comfort. 
Last but not least, accelerated imaging 
means shorter examinations that can 
be invested in additional scans, higher 
resolution, or to improve the overall 
patient throughput. In this context, 
parallel imaging and compressed sens-
ing techniques have been proposed to 
significantly speed up the acquisition 
time while maintaining diagnostic 
image quality.

Parallel imaging
Parallel imaging [1, 2] is well estab-
lished in current clinical practice to 
speed up data acquisition in a large 
number of applications. With this  
technique, scan acceleration is usually 
achieved by uniformly sub-sampling 
k-space, for example, by skipping 
every other line. The resulting aliasing 
can be unfolded by incorporating  
the spatial encoding capabilities of 
multi-coil receiver arrays. However,  
the scan time reduction is often 
restricted to moderate acceleration 
factors between 2 and 4. This  
limitation is due to the restricted 
encoding capabilities in terms of  
number and position of the receiver 
coils. Additionally, acquiring less  
data also leads to a reduced signal- 
to-noise ratio (SNR). 

Compressed sensing
In recent years, compressed sensing 
has gained large scientific attention.  
Originally, it was proposed as a general 
concept to accurately reconstruct a 
signal from a small number of random 

measurements [3, 4]. A few years 
later, compressed sensing1 was  
introduced to MRI [5] and success-
fully combined with parallel imaging 
[6]. Exploiting the compressibility  
of medical images, this method  
promises to markedly exceed the 
acceleration rates that are feasible 
with parallel imaging. Although  
compressed sensing has denoising 
properties, it also has to deal with 
SNR loss from scan acceleration. 
Hence, possible acceleration factors 
scale with the native SNR of the  
scan. Up to now, the potential of 
compressed sensing has been shown 
in a large number of applications 
from 2D to 5D imaging [7-15]. 

The successful utilization of  
compressed sensing is a team play  
of data acquisition and image recon-
struction. In the paper introducing 
compressed sensing to MRI, three  
criteria were identified as being 
essential to ensure successful image 
recovery from sub-sampled data [5]: 

• First, the object that is acquired 
should have a sparse representa-
tion after conversion with a  
mathematical transformation. 

• Second, k-space should be sub-
sampled such that the aliasing 
results in incoherent, i.e. noise-like, 
artifacts in the image. 

• Finally, image reconstruction 
requires a nonlinear, iterative  

optimization that simultaneously 
enforces a sparse representation  
of the resulting image. Thereby,  
it removes the noise-like artifacts, 
while it preserves its consistency  
to the acquired data. 

These three essential requirements 
are discussed in detail below.

Transform sparsity
An image is considered as sparse 
when its informational content  
is represented by only a few pixels, 
while the contribution of the  
remaining majority of pixels is close 
to zero. In medical imaging, an 
angiogram provides a good example 
for such a sparse representation. 
However, in MRI, not all images are 
inherently sparse. But these images 
can also have a sparse representation 
utilizing a sparsifying transform.  
This transform provides an invertible 
mapping from an image to a sparse 
representation. Finite differences,  
i.e. images that contain only edge 
information, provide a simple  
technique to achieve a sparse repre-
sentation, if the image is piecewise 
constant as shown in Figure 1.  
Discrete cosine transform and discrete 
wavelet transform are frequently 
used in the context of image  
compression, for example, in JPEG 
image compression. Utilizing such 
methods, images may be trans-
formed into a sparse representation 
(see Fig. 2). In this domain, the  
content of the image is sufficiently 
described by only few coefficients, 

The short-axis view of the heart (2A) is transformed by the wavelet transform to achieve a sparse representation. In addition to  
the low-resolution representation of the original image, the wavelet transform results in three edge images (2B-2D): While (2B)  
and (2C) contain the edges in horizontal and vertical direction, respectively, Figure 2D shows the diagonal edge components of  
the image. In the wavelet domain, the content of the image is sufficiently described by only few coefficients, i.e. the bright pixels.
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1 510(k) pending. Compressed Sensing  
 Cardiac Cine is not commercially available.  
 Future availability cannot be guaranteed.
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i.e. the bright pixels. The percentage 
of these pixels relative to the total 
number of pixels defines the sparsity 
of the image. For image compres-
sion, pixels in this sparse representa-
tion that are below a certain thresh-
old can be set to zero, which facilitates 
a compression of the signal. Once 
the compressed signal is converted 
back to its initial domain, the visual 
difference between the resulting 
image and its original version is  
negligible. In particular, the discrete 
wavelet transform has been shown  
to be a suitable sparsifying transform 
for many natural images, including 
MRI images, and is commonly used  
in compressed sensing applications. 
In the case of dynamic imaging, 
including CINE imaging, this trans-
form can also be applied in the tem-
poral dimension. The redundancy  
of information along this temporal 
dimension can be exploited, and 
often the sparsity is even higher  
compared to the spatial dimensions.

Incoherent sampling
Unlike the regular sub-sampling  
patterns used for parallel imaging,  

Examples of different sampling schemes, where k-space locations that are acquired are highlighted in white and the ones that  
are skipped are black (upper row) with corresponding image results and aliasing artifacts after Fourier transform (lower row).  
In 2D imaging, sub-sampling is limited to one phase-encoding direction whereas for 3D sub-sampling can be applied in two phase-
encode directions. In case of CINE imaging, additional incoherence can be achieved in the temporal domain. (3A, 3B) Fully sampled 
k-space with artifact free result image; (3C, 3D) Regular subsampled k-space like PAT resulting in superposition of multiple ghosts; 
(3E, 3F) Irregular subsampled k-space as used in CS leading to incoherent aliasing artifacts similar to noise; (3G, 3H) Fully sampled 
k-space with artifact free result image; (3I, 3J) Irregular subsampled k-space as used in CS with noise-like artifacts. 
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the data acquisition process for  
compressed sensing requires that 
k-space sub-sampling is irregular  
(see Fig. 3C for regular and 3E, 3I  
for irregular sampling). In conven-
tional Cartesian parallel imaging,  
regular sub-sampling of k-space  
is advantageous in that the phase-
encoding gradient is increasing  
linearly during the measurement, 
which is beneficial for physical and 
MRI hardware limitation reasons. 
However, violating the Nyquist sam-
pling theorem in this manner results 
in a superposition of shifted replicas 
of the original signal as illustrated  
in Figure 3D. The number of replicas 
equals the chosen sub-sampling rate. 
This aliasing can then be unfolded 
utilizing the spatial encoding capabil-
ities of the multi-coil receiver array 
and parallel imaging. In contrast, 
irregular, incoherent sub-sampling of 
k-space, as required for compressed 
sensing, would result in a noise-like 
appearance of sub-sampling artifacts 
(see Figs. 3F, 3J). Theoretically, com-
pletely random sub-sampling is opti-
mal to ensure this noise-like behav-
ior. However, purely random sampling 
is impractical in the case of MRI.  

On the one hand, large and random 
steps in k-space may require large-
amplitude gradient steps and should 
be avoided due to hardware limita-
tions and physical reasons. On the 
other hand, the sampling trajectory 
must be repeatable to allow the same 
acquisition to be reproduced with  
consistent image quality. Therefore, 
sub-sampling patterns featuring deter-
ministic properties that mimic random 
sampling within the given constraints 
are frequently used for compressed 
sensing data acquisition. In 2D  
Cartesian imaging with pure spatial 
coverage, the sub-sampling is limited 
to one dimension, as only the phase-
encoding direction is sub-sampled  
in MRI. But in case of 2D dynamic 
imaging, the sampling pattern can  
be varied from one time frame to the  
next in order to maintain sufficient 
incoherence for compressed sensing. 
In 3D Cartesian imaging, sub-sampling 
can be applied in two phase-encoding 
directions. Alternatively, non-Cartesian 
sampling trajectories can be used, 
e.g., radial or spiral imaging, that 
already facilitate an incoherent sam-
pling of k-space for 2D imaging.
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Nonlinear image 
reconstruction
If the two above-mentioned  
requirements are sufficiently met,  
the image can be recovered from  
the sub-sampled data by nonlinear, 
iterative reconstruction. In this  
reconstruction, a data fidelity term 
ensures consistency of the estimated 
image to the acquired data and  
a transform sparsity term enforces  
a sparse representation of the image 
in the transform domain by solving  
the following equation:

The data fidelity term minimizes  
the least-squares difference (ǁ·ǁ 2

2) 
between the estimated image, x,  
and the acquired k-space data, y. The 
system matrix, A, describes the data 
acquisition process, i.e., the transform 
from spatio-temporal to frequency 
domain, which is required for the  
comparison of the image and acquired 
data. Incorporating parallel imaging, it 
consists of the coil sensitivity maps of 
the individual receiver coil elements, 
the Fourier transform, and the applied 

min ǁAx-yǁ 2
2 +λ ǁФ(x)ǁ 1

data fidelity
x

transform 
sparsity

This Figure shows the progress of the optimization procedure to preserve data fidelity and reduce noise-like artifacts exemplarily in  
a Cardiac 2D CINE dataset (4A-4C). While the top image shows one image of the time series, a temporal profile along the dashed 
line is plotted below. The incoherent sub-sampling in the spatio-temporal domain results in incoherent artifacts that dominate  
the image after the first iteration (4A). Enforcing a sparse representation of the image and exploiting temporal redundancy, these 
artifacts are reduced with an increasing number of iterations (4B). The compressed sensing reconstruction is terminated after  
40 iterations and results in an aliasing-free image (4C).

4
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Transition into clinical 
routine
Compressed sensing acquisition and 
reconstruction have been completely 
integrated into our clinical MRI  
scanners. Works-in-progress packages 
have been developed and tested by 
our clinical cooperation partners 
world-wide for various applications in 
the fields of cardiovascular [16-19], 
neurological [20], musculoskeletal 
[21-23] and oncological [24] imaging. 
The additional parameters needed  
to compose the compressed sensing 
protocols, for both acquisition and 
reconstruction, have been seamlessly 
integrated into our user interface 
(UI). A selection of possible continu-
ous acceleration factors takes the 
place of discrete numbers that were 
familiar from parallel imaging. This 
facilitates a UI experience with a  
low level of complexity. The award-
winning algorithm for compressed 
sensing reconstruction [8], ranking 
first at the ISMRM 2014 “sub-Nyquist” 
reconstruction challenge, has been 
fully integrated into the Siemens 
image reconstruction environment. 
Without the need for additional  
hardware, the images are directly  
calculated inline utilizing the full 
computational power of the recon-
struction computer. Compressed 

sub-sampling pattern during data 
acquisition. In the transform sparsity 
term, the image is transformed into  
a sparse representation by Ф(·), for 
example, using the discrete wavelet 
transform. In this term, the sum of 
the absolute values of the pixels in 
the transform domain, denoted by the 
ℓ1 norm (ǁ·ǁ 1), is minimized. Hence, 
the optimization procedure minimiz-
ing this equation seeks to find a solu-
tion that fulfills both criteria, data 
consistency and transform sparsity. 
This optimization procedure is more 
computationally intensive than con-
ventional reconstruction, e.g., paral-
lel imaging. The balance between 
data fidelity and sparsity is adjusted 
with the regularization parameter λ, 
which is usually found empirically. 
While small values of λ lead to an 
image that is closer to the acquired 
data, increasing this value tends to 
produce an image that is in favor of 
the sparse solution. When λ is too 
low, the image will be noisy, and 
when λ is too high a strongly filtered 
image appearance may be the conse-
quence. The equation described 
above is iteratively minimized until  
a convergence criterion is met or  
a fixed number of iterations is 
reached. Figure 4 illustrates this  
optimization in the example of real-
time CINE imaging of the heart.
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sensing reconstruction is performed 
on a graphics processing unit, which 
provides a significant speed-up  
in processing time. For example,  
the image series of one cardiac  
real-time CINE slice is processed  
in 10 to 15 seconds.

Thanks to its high acceleration rate 
due to compressed sensing, real-time 
sequences allow for a temporal and 
spatial resolution comparable to  
that of conventional segmented 
acquisitions. For example, compressed 
sensing in cardiac imaging permits 
fast quantification of left-ventricular 
(LV) function in a single breath-hold 
[25]. As demonstrated in Figure 5, 
this sequence still provides diagnostic 
images for LV function quantification 
even in challenging scenarios, such 
as in the presence of arrhythmia, 
where conventional sequences  
usually fail. This sequence may also 
be applied in free-breathing, which  
is beneficial for patients who are  
not able to hold their breath suffi-
ciently and, in general, allows for a 
simplified and more patient-friendly 
examination workflow.

Conclusion
Compressed sensing facilitates  
rapid MR imaging by exploiting  
the fact that medical images have  
a sparse representation in a certain 
transfer domain. Representing a 
team play of data acquisition and 
image reconstruction, this allows  
for the reconstruction of artifact-free 
images following incoherent data 
acquisition. The acceleration enables 
a reduction in the acquisition time  
or an improvement in the spatial  
and/or temporal resolution. Real- 
time imaging featuring compressed  
sensing helps to reduce the need  
for breath-holding or ECG triggering.  
The integration of protocols based  
on compressed sensing in clinical 
workflows allows a significant  
reduction in the examination time  
for each patient. Our generalized 
integration of compressed sensing in 
the scanner environment will allow 
for the straightforward introduction 
of further applications that are likely 
to come in the near future.
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