
A   The transformation A consists of two steps,  
an inverse FFT and a ‘trajectory masking’,  
i.e. only depicting those pixels in k-space  
that were measured

λ   Weighting factor for the tradeoff between  
data consistency and transform sparcity

||…||1  L1 norm: Sum of all absolute values  
(here: pixel intensities in W-space)

||…||2  L2 norm, ‘Euclidean norm’:  
Square root of sum of squares

Subtract  
measured k-space

Compressed Sensing – the Flowchart
Mathias Blasche; Christoph Forman

Siemens Healthineers, Erlangen, Germany

The three key components of Compressed Sensing (CS)1 are

1. Incoherent ('random') sub-sampling
2. Transform sparsity
3. Non-linear iterative reconstruction
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Compressed Sensing Flowchart. Some 'typical' images of the iterative reconstruction are depicted for visualization purposes.1

Abbreviations and terminology

1

The Compressed Sensing Flowchart provides a step-by-
step visualization of the Compressed Sensing measure-
ment and reconstruction process, explaining where and 
why these three key components are involved.

k-space ‘y’  Measured data (echoes), sorted in an m x n matrix;  
in the formulas denoted as ‘y’

Image ‘x’   Clinical image; in the formulas denoted as ‘x’

W-space  Different mathematical depiction of the image  
Examples: Wavelet, Total Variation

FFT  (Fast) Fourier transformation; transforms k-space  
into image space

FFT-1  Inverse FFT, transforms image space into k-space

W  W transformation,  
transforms image space into W-space

W-1  Inverse W Transformation,  
transforms W-space into image space

1 510(k) pending. Compressed Sensing Cardiac Cine is not commercially 
 available. Future availability cannot be guaranteed.
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This means that we are searching for 
an image x such that the term above  
is minimized.

The first term describes the ‘data  
consistency’. It minimizes the least-
squares difference (L2 norm, ||⋅ ||  ) 
between the estimated image x,  
and the acquired k-space data y.  
The smaller this (difference) term 
becomes, the better the consistency.

The second term describes the  
‘transform sparsity’. It is the L1 norm 
of the image transformed into a sparse 
representation (W-space). In this term, 
the sum of the absolute values of  
the pixels in the transform domain, 
denoted by the L1 norm (||⋅ ||  ), is  
minimized. The smaller this L1 norm,  
the higher the sparsity. λ is an  
empirical (application-dependent) 
weighting factor for balancing data 
consistency vs. sparsity. 

Hence, the optimization procedure 
minimizing this equation seeks to  
find a solution that fulfills both  
criteria, data consistency and trans-
form sparsity. This is done in an  
iterative process.

1. Measured k-space
The first picture is the measured 
k-space. There are two differences 
compared to a ‘conventional’ scan:

1.  Strong sub-sampling, i.e. signifi-
cantly fewer echoes than in a  
conventional scan. This results in 
significantly higher scan speed. 
But since the Nyquist-Shannon 
sampling theorem [1] is violated, 
this will result in strong aliasing 
artifacts.

2.  Incoherent (‘random’) sampling. 
This is necessary to create a  
noise-like appearance of the 
 aliasing artifacts (resulting from 
the sub-sampling). The reason  
is that these noise-like artifacts  
(as opposed to structured arti-

facts) can then in a later step  
of the algorithm be removed 
with a thresholding procedure  
in W-space (see step 4). The ran-
dom character of the sampling  
is essential for the success of the  
CS reconstruction – “Random-
ness is too important to be left  
to chance” [2]. 
 
The incoherent sampling in CS  
is different from the (typically) 
coherent sub-sampling that  
is used in Parallel Acquisition  
Techniques, where the (struc-
tured) aliasing is removed  
by means of the knowledge  
of the coil sensitivity profiles. 

The k-space in the formula is  
denoted as y.

2. Image
As a first step, the (incoherently)  
subsampled k-space is Fourier trans-
formed into an image.

This image suffers from strong sub-
sampling artifacts; but these aliasing 
artifacts are ‘smeared’ over the 
image, due to the incoherence of  
the sampling in step 1. The aliasing 
artifacts appear ‘noise like’. The bet-
ter the incoherence of the scan, the 
more ‘homogeneous’ the noise-like 
aliasing artifacts will appear, and the 
better the CS reconstruction will work.

This image serves as a starting point 
for the iterative optimization. Since 
we only covered a small part of 
k-space in step 1, we do not have  
the complete information about the 
image. This image x generated by  
a straightforward FFT is only one  
possible solution that is consistent 
with the measured data – but this 
solution suffers from strong artifacts. 
The following iterative process  
serves to find a better (artifact-free) 
solution that is also consistent with 
the measured data y.

The image in the formula is  
denoted as x.

3. W-space
The image is now transformed into  
a sparse representation (W-space). 
This is a different ‘basis’,  
i.e. a different mathematical  

depiction of the image. The goal  
of this transformation is to locally 
separate the ‘wanted signal’ from  
the noise (artifacts). W-space is a 
better-suited depiction of the image 
as the sparsity in W-space is higher. 
This means that the image ‘informa-
tional content’ is concentrated in  
few pixels in W-space, while most 
pixels have only a very low signal.

There are various different transfor-
mations that can be beneficial  
for this purpose. This depends on  
the application. A Wavelet transfor-
mation is a very common choice  
for MR imaging.

By the way, a Wavelet transformation 
is utilized in image compression with 
the JPEG 2000 format [3].

4. Thresholded W-space
After the W transformation (e.g. 
Wavelet transformation), the ‘wanted 
signal’ is now to a high degree  
separated from the noise (artifacts).  
This allows removing the noise by  
a thresholding procedure:

• Set all pixels with a  
value < threshold to zero;

• Subtract the threshold  
from all other pixel values.

This procedure is called ‘soft  
thresholding‘. It has been shown  
that ‘soft thresholding‘ is beneficial  
for the solution [4]. The threshold  
is predefined, optimized for the 
application.

Since many pixels in W-space now 
have a value of 0, we have fewer 
non-zero pixels (coefficients).  
The ‘transform sparsity’, i.e. the  
sparsity of the image in W-space,  
is increased.

5. Denoised image
We now transform the W-space repre-
sentation back into image space with 
the inverse W transformation (W-1).

By the thresholding procedure in 
W-space in the last step, we have 
now an image with less noise.  
This corresponds to a suppression  
of the noise-like aliasing artifacts, 
due to the incoherent sampling  
we applied in step 1.

The Compressed Sensing 
optimization formula
The following formula describes  
the optimization process of CS:

2
2

1

min || A x – y ||   + λ || W x ||
1

2
2
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the sparsity term as compared to  
the data consistency term.

The iteration of steps 3 to 10 is 
repeated until:

• either the least-squares difference of 
the data consistency term, i.e., the 
Difference Image (step 9), is smaller 
than a predefined threshold ε,  
 
 
 

• or a predefined number of iterations 
Nmax is reached.

In the end, we will have an image that 
is consistent with the measured data, 
but is denoised (i.e. the noise-like 
aliasing artifacts have been removed) 
due to the maximization of the  
transform sparsity. The final image  
will (very closely) look as if we had 
measured k-space completely –  
but at a much shorter scan time.

Optimization of  
Compressed Sensing
We have seen that there are many 
degrees of freedom for the optimiza-
tion of the Compressed Sensing 
results. All these need to be taken care 
of in the application development.

The possible CS acceleration factor 
depends on the transform sparsity  
of the dataset. If the acceleration  
factor is chosen too high (“not justified 
by the sparsity”), the reconstruction 
will not yield acceptable results. The 
possible acceleration factor depends 
on the application.

The weighting factor λ for the balance 
between transform sparsity vs. data 
consistency (as described before)  
and the threshold for the sparsification 
in W-space (the soft thresholding  
in the W-space as discussed earlier)  
are related to each other in order to 
achieve optimal results. Also these 
depend on the application.

All the explanations above are a sim-
plification. There are more ‘intricacies’ 
that were not discussed for the sake  
of simplicity, e.g. how the signals  
from multiple RF channels are han-
dled, the combination of CS with PAT, 
higher dimensionality, etc. 

However, with this denoising we 
have also ‘fiddled‘ with the image 
content. The image has less noise 
(less artifact power) now, but does 
not exactly reflect the measurement 
anymore.

In the next steps 6-8, we will therefore 
check the image consistency (i.e. 
how well the denoised image still 
represents the measurement data).

6. k-space of denoised image
In order to compare the denoised 
image from step 5 with the measured 
k-space from step 1, we first apply an 
inverse Fourier Transformation (FFT-1) 
to transform the image back to 
k-space.

Since the image in step 6 was  
modified, its k-space now consists  
of all spatial frequencies. This means 
that we have a ‘complete k-space’  
(all pixels in k-space have non-zero 
values), as opposed to the measured 
(subsampled) k-space in step 1 which 
had only few non-zero values.

7. Trajectory k-space
Now follows a masking process. 
Remember that we measured only  
a small part of k-space in step 1.  
The k-space from step 6, on the other 
hand, is ‘complete’. To compare the 
two, we filter the k-space (step 6)  
by only depicting the points (the 
‘measurement trajectory’) of k-space  
(step 6) that were also measured in 
k-space (step 1). The rest of k-space 
(step 6) is set to zero.

The two steps inverse FFT (step 6) 
and masking (step 7) together are 
called the ‘A matrix’ in the formula. 
The resulting k-space Ax can then be 
directly compared to the measured 
k-space y.

8. Difference k-space
We now create the ‘Difference 
k-space’ by subtracting the k-space 
Ax from step 7 from the measured 
k-space y from step 1. 

The difference (Ax – y) corresponds 
to the error (non-consistency) that 
the thresholding from step 4 has  
created compared to the measured 

k-space y. The difference is a  
‘correction‘ k-space, so to speak.

9. Difference image
A simple Fourier transformation  
converts the ‘Difference k-space’ into 
a ‘Difference image’.

This is used as a correction for the 
update of the image that we want  
to optimize.

10. Updated image
The image x from step 2 is now 
updated by adding the correction 
(difference) image from step 9. 

This updated image now has less 
noise-like artifacts (corresponding  
to a higher sparsity in W-space) than 
the image had before the update, 
due to steps 3 and 4. 

At the same time, it was made  
consistent with the measured k-space 
from step 1 by means of the correc-
tion from steps 8 to 9.

3-10. Iterative reconstruction
Steps 3 to 10 are now repeated.  
Each iteration will increase the spar-
sity (in W-space), corresponding to  
diminishing the aliasing artifacts in 
image space. At the same time, the 
consistency of the reconstruction 
with the measured k-space is taken 
care of.

This is an alternating optimization  
of data consistency and transform 
sparsity, i.e. the two terms in the  
formula. The factor λ in the formula 
is a weighting that defines the trade-
off between data consistency and 
sparsity, it is pre-defined and opti-
mized for the application.

As a metaphor:  
One can think of scales rocking to  
and fro (between the optimization  
of the first term and the optimization 
of the second term in the formula).  
At the same time, the ‘center of grav-
ity’ (the sum of both terms) is moving 
down (minimizing both terms in the 
formula simultaneously). The factor λ 
in the formula can be thought of as  
a ‘lever’, i.e. a shorter (small λ) or 
longer (large λ) bar of the scales for  

|| A x – y ||   < ε2
2
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Dimensionality, k-space trajectory and degrees of freedom to improve 
incoherency (‘randomness’) of the scan.

2

Contact

Mathias Blasche
Siemens Healthcare GmbH
Karl-Schall-Str. 6
91050 Erlangen 
Germany
Mathias.Blasche@siemens.com

The CS Flowchart only shows a  
depiction of a 2D scan (for the  
sake of simplicity), but Compressed 
Sensing can also (and better) be 
applied for multi-dimensional scans 
with other k-space trajectories. There  
are two important aspects for the 
improvement of the CS performance 
that define which applications benefit  
most from CS. These are the “Increase 
of Sparsity” and the “Increase of 
Randomness”.

Increase of Sparsity
An “Increase of Sparsity” will enable 
higher acceleration factors. If the 
(transform) sparsity of an MR dataset 
is low, no significant acceleration will 
be possible, i.e. it will not be possible 
to remove the noise-like artifacts while 
preserving an accurate anatomical 
depiction. For increasing the possible 
acceleration factor of the scan, a high 
‘dimensionality‘ of the MR scan helps.

A static 2D scan (like a conventional 
T2-weighted TSE scan) will typically 
not have a high sparsity (also not  
in its Wavelet representation). The 
achievable acceleration with CS  
for standard static 2D imaging will 
therefore not be very high.

But it is very different with e.g.  
Compressed Sensing Cardiac Cine  
(2D + time). Along the time dimen-
sion, the sparsity is quite high. In  
CS Cardiac Cine, only little changes  
are expected between sub-sequent 
time-frames due to the high temporal  
resolution and the static anatomy  
surrounding the heart. This increases 
the transform sparsity along the  
time dimension, and therefore high 
accelerations factors (such as 10)  
can be achieved in CS Cardiac Cine.

Other examples where the dataset has 
a high dimensionality and therefore 
higher sparsity with the potential for 

higher acceleration factors include, 
for example, 3D scans, dynamic ‘4D’ 
scans (3D + time) and also diffusion 
imaging with multiple b-values and 
or multiple diffusion directions. 

Increase of Randomness
Also improving the ‘randomness’ of 
the scan will help the performance 
and the possible acceleration factors 
of CS.

Figure 2 shows the number of 
degrees of freedom for different 
dimensionalities and different 
k-space trajectories, in order to 
improve the ‘randomness’ of  
the scan.

With static 2D imaging, there is only 
one degree of freedom, the spacing 
of the k-space line in phase-encoding 
direction. The potential for CS accel-
eration is therefore limited.

With 2D radial imaging, the angle 
between the different k-space lines 
can be freely chosen. Each line 
crosses the center of k-space. There 
are a couple of advantages for radial 
imaging vs. cartesian imaging; how-

2

ever, there are also a couple of disad-
vantages, such as potential aliasing 
in both directions and longer recon-
struction times. The pros and cons  
of cartesian vs. radial sampling need 
to be weighed against each other to 
find the optimal solution, depending 
on the application.

2D + time (as in Compressed Sensing 
Cardiac Cine) also has high dimen-
sionality. There are two degrees of  
freedom, along the phase-encoding 
direction and along time. The spatial 
phase-encoding steps can be chosen 
differently for each cardiac phase.

Static 3D has two degrees of  
freedom, since there are two phase-
encoding directions. This allows a 
better ‘randomness’ than static 2D.

Dynamic 3D has an additional degree 
of freedom, along time. This high 
dimensionality of course holds great 
promise for future developments, 
already available as WIP packages 
from Siemens.

Overall, there is a wide potential  
for future Compressed Sensing  
applications with high acceleration 
factors and high clinical relevance.
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