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Background

Imaging systems need to perform as quantitative, precise 
measuring tools if they are to contribute to the goals  
of personalized and precision cancer medicine. This is 
especially true in radiation oncology where non-invasive 
imaging methods promise to probe the tissue/tumor for 
anatomical and physiological characteristics that affect 
both the decision to treat as well as the distribution of 
radiation dose to be delivered. Analysis of these imaging 
signals over time can also help monitor dynamic response 
to treatment, thereby enabling personalized management  
of solid tumors through treatment adaptation based on 
individual measurements. Quantitative imaging needs 
investment and adoption by industry, academia, and 

Figure 1: Schematic overview of the workflow of the standardized analysis platform.
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healthcare providers to live up to its potential. For imaging 
techniques to become truly quantitative, a high level of 
standardization and novel quality assurance methods are 
needed to minimize the noise in the measurements so that 
even small changes in imaging characteristics associated 
with a patient’s clinical outcome can be detected early 
enough to adapt and personalize treatment. For example, 
the emerging potential to alter the location and prescription 
of the applied radiation dose in response to images acquired 
through the course of treatment requires a high degree of 
reliability for the quantitative performance of the imaging 
performed. 
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Dynamic Contrast Enhanced (DCE) MRI is one such 
(functional) technique aimed at evaluating tissue and  
tumor perfusion parameters. DCE MRI techniques have  
seen a rapid growth in translation into radiation therapy 
clinical trials [1, 2] but DCE MRI measures of tumor vascular 
physiology have shown heterogeneous results across 
studies: this may reflect variability in the MR acquisition 
and analysis approaches across different studies, institu-
tions, and even MR vendors [3–5]. Given the potential for 
DCE MR imaging metrics to provide early indicators of 
therapy-induced changes in the tumor micro-environment,  
it is imperative to obtain a better understanding of these 
imaging biomarkers to guide adaptive and potentially 
individualized therapy approaches in the future. 

Pharmaco-kinetic modelling 

The underlying process of DCE imaging is based on 
measuring the flow of an intravenously administered,  
low-molecular weight contrast agent such as Gadolinium 
and performing pharmaco-kinetic analysis. This involves 
modelling the transport of these contrast molecules 
between the intra-vascular and extra-vascular space. 
Different parameter models for contrast material  
exchange have been developed to quantify physiological 
properties of the microcirculation, such as tissue perfusion, 
vascular permeability, and blood volume. Most of these 
pharmaco-kinetic models are simplified, compartmentalized 
descriptions of transfer rates between intra-vascular and 
extra-vascular blood pools where a uniform contrast agent 
distribution is assumed. As such it is not surprising that  
the reproducibility and accuracy of model-based physio-
logical parameters has been challenging, especially in 
flow-limited situations like hypoxic and necrotic tissue 
regions. Although the type of contrast agents used for other 
imaging techniques such as DCE CT and PET imaging will 
vary in size, osmolality, weight, etc., this fundamental 
analysis problem is shared by all. 

Reproducibility of either DCE CT or DCE MRI alone has  
been low [6, 7] and output parameters from either imaging 
technique have not correlated well. This has been the case 
even in direct, in-vivo comparisons of the same tumor and  
in these situations the variability in kinetic parameters has 
been attributed mostly to differences in contrast agents and 
tumor dynamics between DCE CT and MRI. However, we 
hypothesized that two other factors are perhaps equally 
important: 

1)	 Often, different kinetic models or model implementations  
	 are used for the DCE CT and MRI analysis despite both  
	 using low-molecular weight contrast agents; 

2)	� notwithstanding advances in voxel-based DCE image 
acquisitions, analysis results are mostly reported  
in median values, hence losing the opportunity to 
investigate tumor heterogeneity and masking any 
correlations. 

A recent 4D temporal dynamic analysis (TDA) method, 
which enables voxel-based, parametric analysis based on 

patient-specific dynamic behaviour of contrast flow,  
might provide a more standardized approach for DCE MRI 
analysis, including its validation against DCE CT [8] given  
its linear relation between signal and contrast agent 
concentrate. It was shown that this TDA approach to  
DCE CT pharmacokinetic modelling provides more robust 
measures of change in perfusion following stereotactic 
radiosurgery (SRS) for brain as well as liver lesions [9]. 

Given that both DCE and diffusion-weighted imaging  
(DWI) modelling approaches probe the tumor microenvi-
ronment on a similar scale and are clearly linked in its 
biomechanical description, we designed a multi-modal 
architecture to analyse various complimentary solute 
transport processes in a common framework. The aim was 
to allow for a direct, voxel-to-voxel comparison of tumor 
perfusion, permeability and diffusion parameters from 
registered DCE CT, DCE MRI and DWI-MRI data using a 
shared pharmacokinetic model implementation. It was 
hypothesized that 

a)	 this unified platform would result in better correlations  
	 between parametric maps from DCE CT and MRI than  
	 previously reported; and that 

b)	a high correlation would exist between the Apparent  
	 Diffusion Coefficient (ADC) and extravascular extra- 
	 cellular volume fractions, Ve, given their physiological  
	 connection describing the diffusion of water molecules  
	 inside the extravascular extracellular space. 

A unified pipeline could streamline and perhaps improve 
even the reproducibility of individual functional imaging 
techniques and enable cross-validation of physiological 
response measures across imaging techniques and 
modalities. Once a shared pharmaco-kinetic platform  
is established, other voxel-based features of the tumor –  
such as cell density, or lipid and metabolites as obtained 
from MRI spectroscopy – could be incorporated in order to 
provide complementary information so that together a more 
comprehensive description of the tumor microenvironment 
can be evaluated.

Multi-functional analysis platform

In order to achieve this goal of rich, combined descriptions 
of the micro-environment, one must realize the amount  
of data associated with functional imaging techniques is 
significant. A typical brain perfusion CT scan can be 10 GB, 
which creates special viewing, processing, and data transfer 
requirements to enable reliable and practical integration 
into the clinical decision making process. Automation is 
therefore essential to conduct voxel-based image analysis 
on this scale, so we developed a platform to streamline and 
automate the analysis.

An overview of the platform pipeline is shown in a schematic 
in Figure 1. The core component is the computationally 
intensive TDA method [10] which was remodelled to enable 
GPU-based optimization on a high-throughput cluster [11] 
using CUDA. Briefly, this method applies a classification 
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scheme to each voxel, based on the temporal characteristics 
of the voxel’s contrast enhancement over time and then 
iteratively improves the pharmaco-kinetic modelling based 
on this classification and its resulting parameter sensitivity. 
The Modified Tofts model [12] is commonly used in brain 
perfusion, based on the hypothesis of weak vascularization 
and increased permeability in tumors [13, 14] and this is 
what was used in the following evaluation in brain metas-
tases. In addition to semi-quantitative measures, such as  
the integrated area under the enhancement curve (iAUC90), 
the resulting functional parameters of interest were: Ktrans,  
the transfer constant from the blood plasma into the extra-
cellular extra-vascular space (EES); Kep, the transfer constant 
from the EES back to the blood plasma and Ve, the extra-
vascular extra-cellular volume. The haematocrit value, Hct, 
was assumed to be 0.4 for all cases. 

Additional image registration between DCE MRI and DWI-MRI 
modalities allowed ADC values to be calculated on the same 
voxels as from DCE-MRI. The directional diffusion images 
were averaged on a voxel-by-voxel basis to non-directional 
diffusion images within the TDA framework and then ADC 
values were calculated for each voxel by fitting the mono-

exponential model equation to four-point plots of signal 
intensity by using a linear least square fit algorithm [15]. 

A 3D Voxel Mask was created for each functional parameter 
as well as a separate sum of squared errors (SSE) mask to 
show the transport model quality-of-fit. Finally, a histogram 
moment analysis was done for each parameter inside the 
tumor mask assessing the standard deviation, skew and 
kurtosis of the histogram shape. 

Early treatment response following SRS  
for brain metastases

Comparison of DCE CT to DCE MRI 
Our initial clinical experience with tumor imaging biomarkers 
following SRS for brain metastases used volumetric DCE CT 
and DCE MRI in the same patients supported by this common 
TDA framework [16]. Patients were treated with SRS as part 
of REB-approved clinical trials and underwent volumetric 
DCE CT and DCE MRI scans at baseline, then 7 and 21 days 
post-SRS. TDA was used to create 3D pharmaco-kinetic 
parameter maps for both modalities. The arterial input 
function (AIFCT) was chosen in the carotid artery for DCE CT 
and compared against a vascular input function (VIFCT) in  

Figure 2: Bland-Altman comparison plots of mean Ktrans and AUC values from DCE CT compared to DCE MRI per tumor and imaging day.
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Bland Altman: Ktrans 
Pooled T10 = 1600 ms 
bias = 0.004 min-1 
LoA = 0.168 min-1

the sagittal sinus. For this study, a population-based input 
function (AIFMRI) was used for DCE MRI analysis because  
of variability in flip angle between patients, and to allow  
for a robust comparison of the impact of the analysis 
methodology against DCE CT. 

Direct voxel-voxel Pearson’s analysis showed statistically 
significant correlations between CT and MR which peaked at 
Day 7 for Ktrans (R = 0.74, P< = 0.0001, n = 40). The strongest 
correlation to DCE-CT measurements was found with DCE-
MRI analysis using voxelwise T10 maps (R = 0.575, p < 0.001, 
all cases) instead of assigning a fixed T10 value. Comparison 
of histogram features demonstrated statistically significant 
correlations between modalities over all tumors for median 
Ktrans (R = 0.42, P = 0.01), median iAUC90 (R = 0.55, P < 0.01) 
and iAUC90 skewness (R = 0.34, p = 0.03).

This is illustrated in Figures 2 and 3 with Figure 2 showing 
the mean tumor correlation by ways of Bland-Altman 

comparison for all imaging days derived from DCE MRI  
and DCE CT. The correspondence is relatively scattered  
and indicates a slight bias towards higher Ktrans values from 
MRI. Statistical significance improved significantly when 
comparing the voxelwise correlations taking into account 
tumor heterogeneity as shown in Figure 3 where no bias is 
present.

Based on DCE CT data, AIF and VIF appear to be inter-
changeable in generating similar Ktrans values [16]. This 
confirms that use of individual VIF in DCE MRI analysis is  
a reasonable approach if it can be accurately measured. In 
contrast, the application of different T10 values impacted  
the Ktrans value more dramatically and the inclusion of 
individualized voxel-wise pre-contrast relaxation times in 
the pharmaco-kinetic analysis is essential when evaluating 
parametric tumor heterogeneity [16, 17]. 

Figure 3: Comparison of voxel-wise Ktrans measurement from DCE CT to DCE MRI using a T10 value of 1600 ms (3A) versus 2400 ms (3B) and 
individual T10 from VFA T1 measurement (3C).
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Correlation between ADC and DCE MRI 

Statistically significant correlations were also present 
between ADC values and Ve from both DCE MRI and  
DCE CT, but a large variation was present across tumors  
(R2: 0.15–0.8). These correlations disappeared altogether 
when using the mean ADC values hence disregarding tumor 
heterogeneity as shown in Figure 4.

Summary

By analyzing contrast enhancement data from both DCE 
modalities in a unified and voxel-based approach, it was 
shown that the correlations between their parametric 
output values improved significantly compared to previously 
reported studies that used separate analysis software for 
both CT and MRI analysis. The high level of correlation 
between CT and MRI pharmaco-kinetic parameters supports 
the concept that low molecular weight contrast agents can 

indeed help derive tumor permeability and perfusion 
heterogeneity independent of imaging modality, provided 
the image analysis methods are standardised. We also 
found correlations between ADC values and extravascular 
extracellular volume fraction parameters measured with 
DCE and DWI MRI when analysed using the TDA platform. 
This raises the potential to use this platform to further 
explore biophysical properties of different tumors and their 
microenvironments using multi-parametric imaging data.

This research indicates that more reproducible, quantitative 
measures of the tumor micro-environment can be extracted 
using DCE MRI and DCE CT with appropriate pharmaco-
kinetic models. Being able to non-invasively interrogate  
the tumor micro-environment in a reliable way finally opens 
the possibility of using these imaging techniques to guide 
precision cancer medicine by directing care and adapting 
treatment based quantitative imaging measures of tumor 
response. 

Figure 4:  
(4A) T1-weighted Gad and ADC 
pre-treatment; Day 7 and day 20 
post-SRS for a typical tumor;  
(4B) Voxelwise correlation of Ve  
and ADC for the same tumor;  
(4C) Correlation between median 
ADC and mean Ve values per tumor 
over all imaging days.

4A

4B 4C

ADC

Pre SRS Day 7 post SRS Day 20 post SRS

T1-Gad

ADC vs Ve 

x103

mean ADC vs mean Ve 

x104

ADC

Ve mean Ve

mean ADC

0.5

4

2

6

8

10

12

14

16

18

0
0.2 00 0.2 0.2 0.2 0.2 0.2 0.2 0.70.4 0.6 0.8 1

1

1.5

2

24 Clinical  Therapy Response MReadings: MR in RT  
www.siemens.com/magnetom-world-rt



Catherine Coolens, Ph.D. CIPEM 
Assistant Professor

Departments of Radiation Oncology and IBBME 
Adjunct Faculty, TECHNA Institute 
Radiation Medicine Program 
Princess Margaret Cancer Centre and University Health Network  
University of Toronto

610 University Avenue, Room 5-632 
Toronto, Ontario M5G 2M9 
Canada 
Phone: +1 (416) 946 4501 
Fax: +1 (416) 946 6566 
Catherine.coolens@rmp.uhn.on.ca

Contact

The success of the early TDA platform formed the basis of 
the comprehensive and multi-centre Quantitative Imaging 
for Personalized Cancer Management (QIPCM) program  
now in place at the Princess Margaret Cancer Centre. The 
centralised storage and archiving system that underpinned 
TDA was greatly expanded and QIPCM currently also 
provides end-to-end QA, workflow, and analysis services for 
imaging in clinical trials including: equipment QA, protocol 
development, data anonymization, QC of data during 
accrual, centralized data storage with remote access, 
software tools, and image analysis. The program currently 
supports approximately 20 open clinical trials run under 
Cancer Care Ontario as well as a number of international 
and industrial partners aiming to use functional imaging. 
The GPU version of the TDA tool is being tested internally 
and will be released for external trials in the next couple  
of months.
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