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Introduction: The Quest for Reading 
Efficiency in PET/CT and SPECT/CT
Molecular imaging provides unparalleled capabilities for the detec-
tion, staging and monitoring of various diseases, including cancer 
and neurological disorders. 

Today, as clinicians are pressed to interpret more and more studies 
each day, the quest for efficiency in reading as well as quantification 
is steadily growing.   

Software-based automations can assist clinicians in reducing manual, 
laborious and non-essential work, thus allowing them to focus their 
time and attention on the most critical clinical questions at hand. 

One example of “manual, laborious and non-essential work” is the 
preparation of multiple time-point studies for comparative reading. 

In PET/CT, another example is the manual drawing of reference 
regions of interest (ROIs) in order to arrive at meaningful quantifica-
tion when assessing disease progression or therapy response, e.g., 
by following the PERCIST guidelines.

In SPECT/CT, manual alignment of multiple time-points for assess-
ment of therapy response during the chemo or radiation therapy is 
done for comparative reading.

Below is a more in-depth examination of today’s pain points and 
challenges facing clinicians along the directions represented by the 

two examples above, and explain how ALPHA, a Siemens proprietary 
technology, provides answers for them. 

Use Cases in Reading and  
Quantification
In order to track lesions over time and monitor tumor response 
to therapy, clinicians need to not only visually compare the same 
lesion(s) from two or more time-points, but also quantitatively 
measure the changes. In both scenarios, there are obstacles that 
slow them down.

Challenge I: Multiple Time-point Study Alignment
Conventional image registration algorithms have existed for many 
years now, which can help clinicians by automatically matching up 
studies from multiple time-points. However, these conventional 
algorithms often fail (see Figure 1) when imaging conditions change 
from one time-point to the other, for example, with different field-
of-views, with patient posture changes (e.g., arms-up versus arms-
down), or with different patient table setup (e.g., a thick versus a 
thin cushion). These variations can confuse a conventional image 
registration algorithm because their pixel-by-pixel comparison logic 
may find a “local minimum” by matching shoulder with pelvis, or by 
matching up the two tables instead of the patient anatomy. 

When such failures occur, clinicians have to resort to manual  
alignment of the image volumes. This is a tedious task that slows 
them down and, when the reading load is high, may also wear them  
out mentally. 

Figure 1. Conventional image registration methods often fail when two studies were scanned with drastically different fields-of-view (FOVs). Here, the top row 

shows a study around the neck while the bottom shows a study with extended torso coverage. “Optimal” pixel-based match resulted in matching the neck with the 

pelvic region. Siemens-generated data.
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Challenge II: Efficiency in PERCIST Quantification
PERCIST1 recommends the  use of reference ROIs positioned either 
in the right lobe of the liver or the descending aorta, in order to clas-
sify reportable lesions, to quantify changes in lesion uptake across 
time-points, and to determine response to therapy.

To manually draw and place a ROI of a particular size in a consistent 
and appropriate location inside the liver or descending aorta is not 
a difficult task for the clinician, but surely a tedious one, especially 
if he or she wishes to use PERCIST routinely. 

ALPHA Technology
ALPHA stands for Automatic Landmarking and Parsing of Human 
Anatomy. It is a Siemens proprietary technology platform that 
supports multiple workflow-enhancing features on Siemens imaging 
scanners and in syngo®.via, by automatic detection of anatomical 
structures in the brain, knee, spine, shoulder, hip, breast, liver, lung, 
and vasculatures, etc.2,3,4,5 (see Figure 2). 

A Visual Recognition System         
ALPHA learns, recognizes or infers anatomical patterns from a 
medical image or volume. At its core, ALPHA contains algorithm 
modules (see Figure 3) that behave in a way analogous to the human 
visual recognition system. As a result, it is capable of achieving high 
robustness, reliability, accuracy and reproducibility. 

This is the way a human performs visual recognition: the human 
foveal vision system, at any given time-point, can only focus on one 
point in a scene and perceives a rough, blurred peripheral context. 
However, human eyes quickly collect a large number of such foveal 
evidences from the entire scene, and use the redundancy and 
relationships among these evidences to achieve a reliable recogni-
tion. ALPHA was designed in the same way to recognize anatomical 
landmarks and structures by exploiting the rich context and high 
redundancy in a medical image or volume.

Learning from Examples
To parse a medical image or volume into anatomical parts, ALPHA 
constructs landmark detectors and anatomical configuration models, 
all based on expert-annotated example images (see Figure 4). The 
off-line engine collects image cues throughout each volume in 
the training set, and automatically formulates the detection logic 
by employing those image cues that best discriminate the target 
landmark appearance from other structures. This is achieved using 
statistical learning and feature selection algorithms. 

Because the learning is done implicitly, i.e., purely based on examples 
and without any explicit assumptions regarding the target anatomy 
or modality, ALPHA is highly scalable to different anatomical struc-
tures, and to different imaging modalities.

Figure 2. ALPHA detects various anatomical structures to assist the acquisition or reading of medical images. Siemens-generated data.
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Figure 3. ALPHA in a nut shell.

Figure 4. ALPHA learns from expert annotated examples.

Reliability through Redundancy
Designers for mechanical systems, such as an aircraft engine, use 
redundancy to detect possible failures and to boost system reliability. 
The way to implement redundancy is usually through duplication or 
triplication of critical functions or components. If a component fails, 
one or more redundant parts or alternative logic can identify, alert 
to or correct such a failure.

The ALPHA engine is designed with multiple layers of redundancy 
as well2, to achieve robustness against diseases or imaging artifacts, 
and reliability against algorithmic failure. ALPHA exploits redundan-
cies in several ways: 

1.  Collection of a redundant set of local evidences. For example,  
to determine a 3D registration matrix between two PET/CT 
or SPECT/CT studies (or an oriented 3D MR scan range for 
knee meniscus), four points would suffice. ALPHA detects 
and uses ~20 landmark points. The way that these landmark 
points are learned is analogous to the traditional ensemble 
learning methods, such as bagging6, which have been shown, 
theoretically, to improve learning performance. The differ-
ence is that ALPHA uses a spatial re-alignment scheme (Figure 
5) that makes use of all the training data, , instead of  
a subset of the training data (i.e., “bags” or bootstrap sample  
sets, ) for each sub-task. More specifically, the classic bagging 
predictor for a given input  and a predictor  is formu-
lated as
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Figure 5. Spatial ensemble learning to exploit redundancies and dependencies for improved robustness.

where  denotes averaging or voting among the predictors. In 
ALPHA, the bootstrapping is done by spatial re-alignment of the 
full training set to different landmarks on the target. Denoting 
the re-alignment process as , with  representing the 

th alignment parameters and  the alignment operation, the 
formulation is

where  is a specific voting strategy (described below).

2.  Enforcement of the spatial relationships among anatomical 
structures. In the aforementioned voting function, ALPHA 
embeds anatomical constraints among the landmarks using a 
sparse spatial configuration model. The vote received by land-
mark is denoted by , where  is a voting group. The 
vote is defined as ’s likelihood of being accepted or predicted 
by  based on the conditional distribution estimated using the 
annotated training set. Assuming Gaussianity with mean  
and covariance , the vote is 

where  is the dimensionality of the image and  is a scaling 
parameter used to adapt to under-represented non-Gaussian  
variations (e.g., due to large anatomical articulation). ALPHA 
applies anatomical constraints within each of a large number 
of groups, where each group contains only a very small number 
of landmarks (either two or three), instead of a global model 
containing all landmarks. The benefit of this sparse and highly 
redundant formulation is that even when diseases or artifacts 
alter/occlude much of the target anatomy, it can still be detected 
or inferred using limited evidences. 

3.  Exploiting redundancy in scale space of images. ALPHA detec-
tors are built in multiple scales, but with reduced dependencies 
among them. In other words, while the traditional strategy for 
exploiting scale space redundancy is to implement a “coarse-to-
fine” search to speed up the detection algorithm, ALPHA exploits 
such redundancy to improve robustness. 

Traditional ensembles
(bagging/boosting/

random forests)

Sample/weight
training data

(with replacement)

Use all training data, 
but realign to different 
focus points

Bag medians

Multiple 
detectors

Multiple 
detectors

Final 
detector Final detection

Learned sparse  
configuration models

Spatial ensemble
through re-alignment
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Figure 6. ALPHA registration can 

align multiple time-point studies even 

when they have very different FOVs. 

Siemens-generated data.

Figure 7. ALPHA can automatically align PET/CT and SPECT/CT with MR images 

based on shared anatomical landmarks because it uses the CT technology. 

Siemens-generated data.

ALPHA Answers
Because ALPHA can automatically recognize anatomical structures in 
medical images, it can potentially automate many workflow steps to 
save clinicians time and efforts. Below, we discuss how ALPHA-based 
features answer the two problems discussed earlier.

Answer for Challenge I: ALPHA Anatomical Registration
ALPHA’s answer for the registration challenge is a rather straight-
forward one: In the current implementation, ALPHA detects up 
to 28 landmarks in each study that are covering the whole body, 
filters them based on an anatomical consistency check and uses the 
overlapping landmarks to align studies from different time-points.

Because ALPHA registration is based on recognition of anatomical 
structure just like the way a human observer would do it, instead of 
low-level pixel matching, it is robust to all the variations mentioned 
above (see Figure 6).

Furthermore, as ALPHA’s capability is learned from examples and 
trained to recognize landmarks in MR images as well, it can even 
align studies from different modalities (see Figure 7).

Answer for Challenge II: Auto-Detection of Reference ROIs
ALPHA support in automatic placement of reference ROIs in the liver 
and in the descending aorta (see Figure 8) is not as simple as it 
seems: ALPHA detects multiple landmarks in and around the liver 
and the descending aorta, and uses all of them to infer and confirm 
the final placement of the two ROIs. As a result, the reference ROI 
detectors are very reliable despite changes in image contrast, and 
highly robust to abnormalities such as calcifications in the aorta or 
lesions in the liver (see Figure 9).

Batch Testing Results
A test was conducted on 400 randomly selected PET/CT studies. An 
ALPHA algorithm was invoked to detect 40 anatomical landmarks, 
including soft tissue landmarks, bone landmarks and vasculatures. 
The overall detection sensitivity (the likelihood a landmark present 
in the image will be detected) was 97%. The overall accuracy  
(given a landmark is detected, how likely it is to be accurately 
placed), was 99%.*

*Data on file. Clinical experience may vary based on patients and image acquisition factors.



6

Figure 8. ALPHA automatically places reference ROIs in the liver and descending aorta to assist the clinician in implementing PERCIST-based quantification workflows. 

Siemens-generated data.

Figure 9. Examples of ALPHA-based PERCIST reference ROI detection: descending aorta (top row) and liver (bottom row). Siemens-generated data.

ALPHA Inside
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Conclusion
ALPHA technology treats a medical image not merely as a collec-
tion of pixels, but rather as a configuration of various anatomical 
structures. Based on its capability to learn human anatomy from 
different modalities, ALPHA can provide meaningful help for a clini-
cian to improve his or her workflow. However, as with all computer 
algorithms, ALPHA results should not be taken as the ground truth, 
and a careful review and verification should be performed before 
drawing clinical conclusions.
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