
Introduction 
Tumor heterogeneity occurs at multiple levels with  
marked differences in cell mix, size and arrangements. 
Heterogeneity also exists in microenvironmental factors 
(including oxygenation, pH, interstitial pressure, blood 
flow), metabolism and gene expression. This profound 
heterogeneity is extremely important for prognosis, 
therapy planning, drug delivery, ultimately affecting 
patient outcomes. There are numerous ways of inves-
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tigating tumor heterogeneity, which include using 
functional and molecular imaging, some of which  
can be applied to clinical data [1]. 

Quantitative assessment of tissue water diffusivity using 
ADC values allows tissue microstructure at a µm–mm 
scale to be evaluated, thus reflecting tissue cellularity, 
organisation and blood flow. Most studies investigating 

Left 2-columns: Whole-spine sagittal STIR sequences show diffuse 
bone marrow infiltration at baseline (1A) with no interval changes 
following hormonal therapy (1B). Middle 2-columns: Whole-spine 
sagittal T1-weighted images show diffuse bone marrow infiltration 
with no appreciable return of bone marrow fat after therapy (1D).
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Figure 1: Morphological images and 3D DWI MIPs (inverted scale).

Right 2-columns: Whole-body b900 3D MIP (inverted scale). 
The bone marrow is diffusely involved with diffuse regions of 
high-signal intensity in the axial skeleton and in the proximal 
limb bones prior to therapy. A minor global reduction in the 
b900 signal intensity of bone marrow can be seen but this is 
not very convincing (1F).

Continued on page 61.
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Figure 2: Morphologic and diffusion-weighted axial sequences with axial bone window CT images of the L3 vertebral body and sacrum 
before and on hormonal therapy with bisphosphonates.
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Axial ADC, T2w-HASTE, b900 and axial bone window CT scan images before and during therapy through the L3 vertebral body (2A, B) 
and sacrum (2C, D). 

Figures 2A and 2B: the L3 vertebral body marrow shows no change in ADC values but there is some decrease in the b900 signal intensity. 
A uniform increase in CT density with ‘milky appearance’ of the bone is consistent with responding disease (CT density 300 HU before 
therapy and 550 HU after therapy). However, the persistent elevated signal intensity on the b900 images suggests the ongoing presence 
of active disease.

Figures 2C and 2D: the CT scan shows a uniform increase in bone density (CT density 315 HU before therapy and 530 HU after therapy). 
Again the CT density change is not high enough to be confident regarding response. However, the ADC maps show intermixing of high 
and low ADC value voxels resulting in a textural change.
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Figure 3: Whole-body tumor load analysis.
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WB-tumor load segmentations were undertaken on syngo.via Frontier MR Total Tumor Load software1. The whole-body b900 images  
were segmented using computed b-value images of 900–1000 s/mm2, setting a signal intensity threshold of 100 AU. Extraneous signals 
(such as the brain, kidneys, spleen and bowel) were removed, to leave only recognizable bone disease sites. The b900 MIP images are 
overlaid with ADC value classes using the 95th centile value of the pre-treatment histogram (1125 µm2/s) and 1500 µm2/s. 

Red colored voxels represent untreated disease or those with no-detectable response. 

Green colored voxels have ADC values ≥1500 µm2/s (representing voxels that are ‘highly likely’ to be responding). 

The yellow voxels lie between the 95th centile value of the pre-treatment histogram (1125 µm2/s) and 1500 µm2/s.  
Thus, yellow voxels represent regions ‘likely’ to be responding.

706 mL of bone marrow was segmented before therapy and 795 mL after therapy. Note that there is no significant increase in median 
ADC values (819 µm2/s and 891 µm2/s respectively), but a decrease in excess kurtosis (8.6 and 0.2 respectively), and broadening of ADC 
histogram and an increase in the standard deviation (199 and 313 µm2/s respectively) can be seen on the corresponding relative fre-
quency histograms. There is a unimodal distribution of ADC values at baseline (TP1) and a plateau distribution of the post-treatment 
(TP2) histogram. 

The whole-body ADC color projections focusing on response (ADC maximum intensity projections) for both time points are shown.  
A spatial discordant response pattern is visible with responding increasing yellow and green voxels in the pelvis and proximal femora.

1	 syngo.via Frontier is for research only, not a medical device. syngo.via Frontier MR Total Tumor Load is a released research prototype.
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1	 syngo.via Frontier is for research only, not a medical device.  
	 syngo.via Frontier MR Total Tumor Load is a released research prototype.

the usefulness of diffusion imaging for disease character-
ization, prognostication and therapy response use region-
of-interest (ROI) approaches deriving mean values of ADC 
(unit: µm2/s). This averaging method can be used to assess 
heterogeneity between ROIs or between patients, but 
fundamentally, ignores the heterogeneity within the ROI.

The characterization of tissues can be improved using 
histogram-based assessments of the distribution of ADC 
values. Histogram approaches have multiple advantages, 
including volume-of-interest (VOI) assessments, thus 
avoiding the subjectivity that is inherent with ROI place-
ments. Importantly, histograms can provide additional 
metrics that reflect the texture of lesions, thereby allowing 
heterogeneity of ADC distribution within tissue to be 
assessed.

Histogram-based ADC analyses have mostly been under-
taken in the context of neuroimaging showing added value 
for brain tumor grading, prognosis and therapy response 
[2–4]. However, this approach is increasing being applied 
to extracranial tissues, including evaluations of cervix  
and breast cancers [5–7], liver fibrosis [8], peritoneal 
malignancy [9] and bone metastases [10, 11]. These and 
other studies, have shown the potential of ADC histogram 
descriptors to improve the characterization of tissues, as 
well as to serve as prognostic and response biomarkers.

In this report, we describe a patient with breast cancer 
metastasising to the bone marrow, who underwent 
hormonal treatment. CT scans, morphologic MR images 
and ROI derived ADC assessments were confusing when 
trying to gauge the success of therapy. Volume based 
assessments of whole-body tumor load and ADC 
histograms, enabled an accurate assessment of the 
clinical status allowing therapy to be continued.

Case study
A 37-year-old woman presenting with a 2-year history  
of lower back pain was found to have diffuse metastatic 
bone infiltration following an MRI of her lumbar spine.  
A bone marrow trephine biopsy and core biopsy of an 
asymptomatic left breast mass showed the presence of 
metastatic ER-positive, HER2 2+ (FISH-negative), grade  
2 invasive ductal carcinoma of the breast. She was 
commenced on systemic anticancer hormonal therapy 
with Tamoxifen and Goserelin as well as with Zoledronic 
acid infusions.

She underwent baseline and 3 month follow-up whole-
body MRI scans with diffusion-weighted sequences using  
a 1.5T MAGNETOM Avanto scanner using a published 
protocol [12]. The baseline scan demonstrated extensive 
metastatic bone only disease (Figs. 1, 2) that does not 
change appreciably on morphological T1w, T2w and  

STIR images of the spine. CT scans undertaken at the 
corresponding time points, show uniform increases in  
bone density with a ‘milky texture’ which are difficult to 
interpret regarding the activity of the underlying disease. 
It’s only when CT density increases to >850 HU that it is 
possible to be confident about the likelihood of inactive 
disease [13]. There was minimal reduction in b900 signal 
intensity.

The diffusion-weighted images for both timepoints  
were analysed using the threshold-based segmentation, 
syngio.via Frontier MR Total Tumor Load software1 [14]. 
The pre-treatment ADC histogram has a unimodal distri-
bution of ADC values with high excess kurtosis (Fig. 3). 
After 3 months of hormonal therapy, a plateau distri-
bution of ADC values can be seen with little change in  
the mean ADC but a greater spread in ADC values can  
be appreciated. Responding voxels (yellow/green voxels) 
are mostly seen in the pelvis and proximal femora on the 
ADC color projections focusing on response. These ADC 
histograms are consistent with a favorable therapy 
response, because of which treatment was continued.

Discussion
There are a variety of approaches for objectively dis-
playing and analyzing ADC images in response assessment 
settings. Most studies report mean values from single/
multiple ROIs placed on high b-value images, which  
are then copied on ADC maps for quantitate ADC value 
readouts. Recently, studies have begun to report on central 
tendency measures (mean, median, mode values) of ADC 
histograms on volumes of interest (VOIs). Because bone 
metastases are heterogeneous in their spatial ADC 
distributions, these simpler, first order measures have 
limited abilities to detect treatment-related changes, 
particularly if there are both increases and decreases  
in ADC in response to treatment (for example, when ADC 
values increase due to tumor cell kill and decrease due  
to bone marrow renormalization, fibrosis and dehydration) 
[15]. As a result, the net mean/median ADC change may 
be minimal. Furthermore, if large cystic or necrotic areas 
are present, then the ability to detect therapy response 
induced changes may be blunted. 

More complex changes in ADC values can be evaluated by 
assessing the spread of the ADC data (variance, standard 
deviation, range (maximum-minimum difference), centile 
ranges, histogram entropy). The spread of ADC data 
allows estimates of the proportions of responding or 
non-responding tumor volume to be determined by the 
application of threshold cut-off values. So, in this case,  
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the proportion of voxels in the active range (ADC-low 
voxels below 1125 µm2/s) is 95% and 73% respectively  
at the two time-points. 

Other higher order descriptors of histograms such as 
skewness (a measure of the degree of asymmetry of  
a distribution) and kurtosis (which is the degree of 
peakedness of a distribution) can also be helpful for 
evaluating therapy response. Comparison of relative 
frequency histograms to normal distributions allows 
quantitative values to be assigned to histogram kurtosis; 
positive excess kurtosis values >0 (leptokurtic shape) 
indicates a higher peak than for a normal distribution 
(normal distribution shape is described as mesokurtic  
with an excess kurtosis value = 0). After therapy, excess 
kurtosis decreases often reaching values <0 (platykurtic). 

Readers should also be aware that both measurement 
(e.g. poor SNR) and analysis methods (e.g., two-point 
fitting for generating ADC values) can alter the skewness 
of histograms independent of therapy induced effects, 
because of which the quality of ADC maps images should 
be critically assessed, before higher order histogram de- 
scriptors such as maximum and minimum values, range 
and skewness are used to infer biologic significance.

ADC histogram analysis for assessing bone metastases 
ADC histograms of untreated bone metastases are often 
positively skewed (tail to the right) with positive excess 
kurtosis. For our data acquisition protocol that uses b50, 
b600 and b900 mm2/s diffusion-sensitizing gradients,  
the majority of tumor ADC pixel values usually lie in the 
650–1500 µm2/s range for untreated disease. Positive 
excess kurtosis is often maintained in the setting of tumor 
progression or in stable disease, although mean/median 
values may change depending on the relative extent of 
tumor infiltration and fat content in the bone marrow.  
If tumors are necrotic before treatment or if there has  
been a response to prior treatments, then more complex 
histogram shapes can be seen.

When tumors respond successfully to therapy, kurtosis 
values generally decrease and the standard deviation/
variance increases. Negative skewness (tail to the left) 
often develops if the histogram retains a unimodal shape. 
Thus, the transformation of a positive kurtosis, positively 
skewed unimodal ADC distribution into a plateau shape  
in response to a therapy indicates likely response even in 
the absence of a significant change in mean/median ADC 
values. Where successful response is accompanied by 
regeneration of the normal bone marrow as part of the 
healing process, a distinct second ADC peak below the 
tumor peak can be observed which is illustrated in two 
accompanying cases within this issue of MAGNETOM Flash 
[15, 16].

Radiologists often enquire when there is an absolute  
need to use ADC histograms in “daily clinical practice”? 
Generally, we find ADC analyses are most useful in the 
presence of extensive, diffuse metastatic disease on  
WB-DWI or when there has been an apparent mixed/
heterogeneous response to therapy. In these patients, 
visual inspections of morphological and diffusion-
weighted images can be problematic and applying the 
MET-RADS response criteria [12] can be challenging due  
to the high volume of disease present. In these cases, we 
find histogram analyses indispensable because of the 
ability to observe changes in the spread, skewness and 
kurtosis of the ADC data.
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Whole-body MRI has been used  
at Paul Strickland Scanner Centre 
(Northwood, UK) for over 10 years.  
In that time over 4000 examinations 
have been performed using a protocol 
designed to enable the detection and 
surveillance of metastatic bone and 
soft tissue disease. 

Will McGuire, Deputy Superintendent 
MRI Radiographer, shares his protocol 
along with a video demonstrating the 
use of this protocol.

Whole-body MRI at 1.5T –  
a How-to Guide, .exar1 protocol file and a video

Visit www.siemens.com/wb-mri 
to download the material.
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