Clinical Results Cardiovascular

Multiple Arteriovenous Fistulas in the Left Lower Limb

By Xing Liu, MD*; Xi Zhao, MD**

*Department of Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China

**Siemens Healthineers China

History

A 63-year-old male patient, who has been suffering from venous varicosity of the left lower limb for the past 30 years came to the hospital for a checkup. Physical examinations revealed a mild swelling of the left lower limb with prominent varicosity. An ulcerated area, measuring 3 × 5 cm in size, was visible on the lateral side. A Dual Energy (DE) CT angiography (CTA) was performed to investigate the cause of the varicosity.

Diagnosis

DE CTA images showed four arteriovenous fistulas (AVFs) in the left lower limb (Fig. 1d). Two arterial feeders issued from the distal popliteal artery, right above the bifurcation of the posterior tibial and the fibular arteries. Another two came off the proximal anterior tibial artery. Malformed blood vessels were shown in three areas, and the ulcerated area was fed by two arteries – one from the distal popliteal artery and the other from the proximal anterior tibial artery. Subsequently, the patient was scheduled for an interventional treatment.

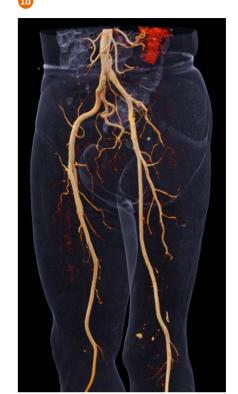
Comments

AVFs are anomalously formed by a single vascular channel between an artery and a vein, diverting blood from the normal anatomic capillary beds. Although digital subtraction angiography (DSA) is the gold standard for diagnosing vascular disorders including AVFs, it is invasive and needs to

Examination Protocol

Scanner	SOMATOM Force		
Scan area	Lower extremity	Rotation time	0.5 s
Scan mode	Dual Source Dual Energy	Pitch	0.6
Scan length	1,116 mm	Slice collimation	128 × 0.6 mm
Scan direction	Cranio-caudal	Slice width	1.5 mm
Scan time	24 s	Reconstruction increment	1.0 mm
Tube voltage	70 / Sn150 kV	Reconstruction kernel	Qr40 (ADMIRE 3)
Effective mAs	110 / 37 mAs	Contrast	350 mgl/mL
Dose modulation	CARE Dose4D™	Volume	60 mL + 50 mL saline
CTDIvol	2.55 mGy	Flow rate	5 mL/s
DLP	292 mGy cm	Start delay	Bolus tracking in the abdominal aorta @100 HU + 7 s

be performed by a specialized team. CTA can serve as the initial imaging study, since it is noninvasive and easily accessible. In this case, DE CTA was performed and the contrast enhancement was compared between the linearly blended images and the images displayed at 45 keV using DE Monoenergetic Plus – an algorithm that performs a regional spatial frequencybased recombination of the high signal at lower energies and the superior noise properties at medium energies to optimize contrast-to-noise ratio (CNR).[1] The contrast of the distal vessels is significantly enhanced at 45 keV, thus depicting small vascular details and providing an important guidance for the interventional treatment.


Reference

[1] Grant KL, Flohr TG, Krauss B, et al. (2014) Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol. 2014 Sep;49(9):586–592.

The outcomes by Siemens Healthineers customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption), there can be no guarantee that other customers will achieve the same results.

In clinical practice, the use of ADMIRE may reduce CT patient dose depending on the clinical task, patient size, anatomical location, and clinical practice. A consultation with a radiologist and a physicist should be made to determine the appropriate dose to obtain diagnostic image quality for the particular clinical task.

1 Cinematic VRT images show the runoff (Fig. 1a and Fig. 1b) and the four identified AVFs (arrows) in the left lower limb (Fig. 1c and Fig. 1d). Although the same preset is applied, the small vascular details are more clearly depicted in the images displayed at 45 keV (Fig. 1b and Fig. 1d) than in the linearly blended images (Fig. 1a and Fig. 1c). This is due to a much higher contrast enhancement. The ulcerated area (arrowhead) is fed by two arteries – one from the distal popliteal artery (short white arrow) and another from the proximal anterior tibial artery (long white arrow).

News & Stories · www.healthcare.siemens.com/news

News & Stories · www.healthcare.siemens.com/news