

Routine DE Acquisitions in an Oncological Center

Patrick Emonts, MD
Medical Imaging
Institut Jules Bordet, Brussels, Belgium
Université Libre de Bruxelles (ULB)

Routine DE Acquisitions in an Oncological Center: Structure

- Introduction on CT in oncology
- Technical choices in routine acquisitions
- Clinical DE applications selection
 - VNC iodine map use in current exams
 - Body CT examples in oncology
 - Perfusion imaging and quantification in routine pulmonary CT angiography
- Bonus (SE) Abdominal perfusion application
 - Hepatic perfusion with arteriography extraction in radioembolization planning

Intro - CT-scans Specificities in Oncology

- Screening & FU are the most usual indications
- > 80% CECT
- > 50% multiple regions CT (all body, thorax + H&N...)
- Many CT as part of clinical studies
- → We need standardized techniques

Intro – Patients Specificities in Oncology

- Frequent examinations resulting in high cumulative radiation dose
- Longer life expectancy
- At high risk of pulmonary embolism
- Increased prevalence of renal failure
- → Limit iodine and radiation doses

In House Routine Technical Choices

- Somatom Force® All CECT in dual energy
- Common use of VNC & iodine map
- No more non-enhanced CT before a CECT
- Maximal use of IR algorithms and dose reduction
- Very low dose CT for pulmonary screening (DLP 20 mGy.cm)
- Reduced iodine quantity for pulmonary angiography (40ml, 16g)
- Abdominal CT: iodine volume/flow related to the patient's weight

Abdominal CT: iomeprol 400 mg/ml Best portal phase

< 56 kg	75 ml	2.5 ml/s
56-65 kg	90 ml	3 ml/s
66-85 kg	105 ml	3.5 ml/s
86-95 kg	120 ml	4 ml/s
>95 kg	130 ml	4.5 ml/s

VNC-Iodine Map in Current Exams

Density ROI on VNC-Iodine Map Fusion Various Clinical Applications

- Know the spontaneous density of adrenal lesion
- Be sure an hepatic lesion is enhancing
- Differentiate hematomal and enhancement
- Estimate enhancement

Density ROI and Iodine fraction Potential functionnal studies

- Follow an hypervascular lesion
 - Chemotherapy ongoing
 - . Mid-term RT
 - → early response evaluation
- Predict tumor response to anti angiogenic
- Differentiate infiltrated small nodes (5-15 mm)
- . . .

Density ROI oncological examples Case1: FU Lung cancer post RT

JULES BORDET

INSTITUUT

Case1: FU Lung cancer post RT

VNC 52.4 HU, CM -5.2 HU

Density ROI Case1: FU Lung cancer post RT

Case1: FU Lung cancer post RT

- Post-radiation fibrosis
- Phantom node

Case 2: FU Melanoma

- Pleural met surgery scar
- Complete remission

INSTITUUT

Case 2 : FU Melanoma

Density ROI Case 2 : FU Melanoma

INSTITUT
JULES BORDET

INSTITUUT

Case 2: FU Melanoma: 4 and 8m before

Density ROI Case 2 : FU Melanoma

Liver

- Low density
- Non-enhancing
- . → Benign cyst

Spleen

- Low density
- Weakly enhancing
- Increasing size
- → Melanoma met

Case 3: FU breast cancer

- Bone, hepatic and pleural mets
- Herceptine trastuzumab
- Complete remission

- Pleural lesions
- High density on mixed image
- Diagnosis?
 - Pleural plate
 - Met scare
 - Active met

- Very high density on VNC
 - → diffusely calcified
- Substantial enhancement
 - → vascularized

Density ROI Case 3: FU breast cancer 3y before

- Residual pleural metastases
- Diffusely calcified
- Latent / nonevolutive

Pulmonary CT Angiography

- DE acquisition Systematic perfusion imaging
- DLP: 120 mGy.cm, Iodine CA: 16g
- Reduced procedure duration:
 - Exam <10 min</p>
 - Acquisition <5 s
 - Reconstructions < 3 min
- Multiple informations obtained
 - Chest morphological CT scan
 - Angiography
 - Perfusion imaging
 - Volumes and perfusion quantification

Pulmonary CT Angiography 1 Anatomical mixed images

Pulmonary CT Angiography 2 Angiography (low KV tube)

Pulmonary CT Angiography 3 2D perfusion fusion images

Pulmonary CT Angiography 3D perfusion images

Numerous perfusion defects < peripheral PE

Pulmonary CT Angiography

4. lung volumes & perfusion quantification

	Volume [cm3]	Full Volume [cm3]	Below Min [% of Voxels]	Above Max [% of Voxels]	Enhancement [HU]
Total	3742	3742	0	8	45+/-18
Left and Right	Lung				
Right	2088	2088	0	8	42+/-15
Left	1654	1654	0	9	49+/-21
Parts of Right	Lung				
Right - Upper	702	702	0	5	40+/-\2
Right - Middle	691	691	0	7	37+/-15
Right - Lower	696	696	0	12	49+/-15
Parts of Left L	ung				
Left - Upper	556	556	0	5	49+/-28
Left - Middle	551	551	0	8	46+/-13
Left - Lower	547	547	0	14	53+/-17

- Automatic lung segmentation & perfusion info
- Perf corresponds to average enhancement

Pulmonary CT Angiography

JULES BORDET

1	A	В	С	D	E	F	G
1	Quantification des volumes et de la	a perfusion pu	ulmonaire				
2							
3	Volume du poumon droit :	2088	ml	55,8%			
4	Volume du poumon gauche :	1654	ml	44,2%			
5	Volume pulmonaire total :	3742	ml	100%			
6							
7	Répartition perfusionnelle du poumoi	n droit					
8	1/3 supérieur :	40	UH	31,7%	du poumon D	17,7%	du total
9	1/3 moyen:	37	UH	29,4%	du poumon D	16,4%	du total
10	1/3 inférieur :	49	UH	38,9%	du poumon D	21,7%	du total
11	Poumon D			100%	du poumon D	55,8%	du total
12							
13	Répartition perfusionnelle du poumoi	n gauche					
14	1/3 supérieur :	49	UH	33,1%	du poumon G	14,6%	du total
15	1/3 moyen:	46	UH	31,1%	du poumon G	13,7%	du total
16	1/3 inférieur :	53	UH	35,8%	du poumon G	15,8%	du total
17	Poumon G			100%	du poumon G	44,2%	du total
18							
19	Poumons D+G					100%	du total

Introduce in a table to calculate perf % of each
 1/3 lung

Hepatic Perfusion CT – Arteriography Extraction

- Use in locoregional hepatic transarterial therapies
 - Radioembolization
 - Chemoembolization
 - Hepatic arterial infusion
- Radioembolization proceeds in 3 steps
 - Perfusion CT with arteriography extraction
 - Embolization simulation
 - Treatment

Hepatic Perfusion CT – Arteriography Extraction

1st step before invasive procedures

Objectives:

- Appreciate arterial part of tumoral perfusion
- Predict the response to treatment
- Obtain a CT hepatic arteriography to plan the selective arteriography

Hepatic Perfusion CT – Arteriography Extraction Clinical Case

- CRC with exclusive hepatic bilobar mets
- Progressive after 2 chemotherapy runs
- FDG-PET + lesions
- Full liver radioembolization decision

Hepatic Perfusion: Post Processing

HPI

- Lesions 1 86%
- Lesion 2 80%
- Normal tissue 36%
- → Vascularisation
 - Lesions 80% arterial
 - Normal T 1/3 arterial
 - Good candidate for radioembolization

Hepatic Perfusion: Post Processing Arteriography Extraction

 Best arterial time point selected

Hepatic Perfusion: Post Processing Arteriography Reconstructions

- Technical standardization prime in oncology
- lodine and radiation doses have to be restricted for these very exposed patients
- We recommand a systematic use of dual energy acquisitions for CECT
- We recommand to execute all the body scans on the same scanner
- VNC/lodine Map use is often helpfull

- A pulmonary dual energy CT angiography offers simultaneousely
 - An anatomical chest imaging
 - An angiography
 - A perfusion lung imaging
 - Perfusion & volumes quantification

- Hepatic perfusion CT in locoregional transarterial therapies planning allows
 - To appreciate the arterial part of tumoral perfusion
 - To extract a high contrast arteriography

Thank you for your attention

