
Over the last several decades, substantial technical  
innovations have paved the way for the delivery of highly 
precise and focused radiotherapy. These achievements  
can be primarily attributed to two sources: firstly, modern 
imaging technologies like computed tomography (CT), 
magnetic resonance (MR) imaging and positron emission 
tomography (PET) are increasingly incorporated in diagnostic 
evaluation and treatment planning, allowing for enhanced 
tumor delineation and secondly, the integration of imaging 
modalities directly into a linear accelerator have enabled 
daily monitoring of patient and tumor positioning as well 
as alterations in patient anatomy [1, 2]. 

Presently, CT-based image guidance has become  
standard-of-care, as CT imaging is routinely incorporated  
in nearly all radiotherapy units. However, low-dose CT  
imaging affords poor soft-tissue delineation and primarily 
allows for image guidance based on bony anatomy [3]. 
Conversely, MR offers excellent soft-tissue contrast allowing 
for precise target volume identification as well as monitoring 
of inter- and intrafractional changes in tumor positioning 
[4]. Given the technical challenges in integrating MR  
imaging into a linear accelerator, the first studies on  
MR-guided radiotherapy focused on offline solutions,  
with two different approaches proposed: either the patient 
was transported between the MRI and the linear accelerator 
or the MRI scanner was attached to rails on the ceiling to 
be moved out of the treatment room to ensure undisturbed 
operation of the linear accelerator [5–7]. At Heidelberg  
University Hospital and the German Cancer Research  
Center, we have prospectively treated patients with  
pelvic malignancies with offline, shuttle-based MR-guided 

radiotherapy and recently reported the efficacy, feasibility 
and patient compliance with this technique [8]. 

Nevertheless, all offline approaches are time-consuming 
effectively increasing the risk of intrafractional organ  
motion. Furthermore, the required patient re-positioning 
and associated positional inaccuracies challenge optimal 
radiotherapy delivery [6–8]. Naturally the radiation oncology 
community was eagerly awaiting the launch of the first  
hybrid machine incorporating a MRI scanner into the  
treatment delivery system [9]. Cobalt-60 teletherapy units 
were initially used for on-board MR imaging, but with  
recent advances and upgrades, linear accelerators are  
now increasingly utilized, with two hybrid devices currently 
available: the Viewray MRIdian Linac system (ViewRay, 
Oakwood Village, OH, USA), composed of a split-bore 
0.35T MRI scanner, radiation gantry, and a 6 MV linear  
accelerator in the gap between the two magnet halves, 
and the Elekta MR-linac (Elekta AB, Stockholm, Sweden), 
composed of a 1.5T MRI scanner and a ring-based  
gantry containing a 7 MV standing wave linear accelerator 
[10–15].

The new MR-guided hybrid systems not only offer 
superior 3D imaging for precise tumor delineation as  
well as interfractional changes, but also provide 4D infor-
mation via continuous monitoring of target volumes and 
surrounding critical structures for the treatment duration 
(cine MRI) [9, 13]. Compared to conventional radiotherapy 
techniques, safety margins and hence irradiated volume, 
can be decreased effectively reducing the risk of ensuing 
toxicity [12]. Encouraging initial results have been  
published for several tumor entities including pancreatic 
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carcinoma, early-stage low-risk breast cancer, and hepatic 
and adrenal metastases [16–19]. With some devices fur-
ther offering gated dose delivery, neither the application 
of an internal target volume (ITV) nor invasive implanta-
tion of fiducial markers are needed for accurate motion 
management when using MR-guidance [9]. Respiratory 
gating and tumor tracking enable “real-time” anatomical 
feedback with the advantage of further reducing safety 
margins [20]. 

Beyond the aforementioned advances, the true potential 
of the new MR-guided hybrid devices lies in immediate,  
online adaptive treatment based on daily anatomical  
variation [18, 21]. MR-guided adaptive radiotherapy allows 
for the delivery of highly conformal treatments moulded  
to the current tumor position, enabling dose escalation to 
the primary target, with the potential for improved local 
control. Yet even without dose escalation, enhanced  
sparing of adjacent critical structures from dose spillage  
remains promising. Indeed, the initial studies identified  
primarily dosimetric advantages with online adaptation of 
MR-guided stereotactic radiotherapy of pancreatic, adrenal 
or ultracentral thoracic malignancies with additional  
clinical trial results highly awaited [16, 18, 22]. Radiation 
oncologists are now forced to reconsider the paradigms  
of total dose determination prior to treatment initiation 
and equal dose delivery for each fraction. 

Beyond superior soft-tissue contrast, MRI also  
allows for incorporation of functional imaging, including 
non-invasive assessment of tissue perfusion, diffusion  
or cellular density [23, 24]. The potential availability  
of on-board ‘functional’ MRI sequences may allow for  
biologic, in addition to geometric, adaptation. For exam-
ple, diffusion-weighted imaging (DWI) not only facilitates 
the identification of diffusion-altered tumor from sur- 
rounding healthy tissue, but also enables quantitative  
evaluation of suspicious lesions by using the apparent- 
diffusion coefficient (ADC), which correlates with  
cellularity and has been shown to be predictive for treat-
ment responseto radiotherapy, as previously examined 
with rectal tumors [25, 26]. Hence, functional imaging 
might support early identification of nonresponders  
who may benefit from dose escalation. Future studies  
will answer whether daily on-board functional imaging is 
necessary or whether weekly offline imaging is sufficient 
for predicting treatment response. Currently, only 0.35T 
and 1.5T on-board MRI imaging is offered, misjudging  
the true potential of MR guidance. High-end diagnostic  
MRI scanner offer superior imaging quality for assessing 
tumor response and even potential treatment-related  
toxicity. A recent study illustrated the high benefit of 
3T-MRI for predicting pathological treatment response  
following neoadjuvant radiochemotherapy for pancreatic 
cancer [27]. High-field or even ultra-high-field MRI further 
enables not only functional but also molecular imaging  

for even more precisely identifying tumor volumes,  
characterizing radioresistant tumor regions before  
radiation therapy and detecting recurrent disease  
following treatment [28]. Chemical exchange saturation 
transfer (CEST) MRI was recently reported to serve as a 
 predictor of early progression in glioblastoma patients 
[29, 30].

A further highly promising scenario is MR-only  
planning bearing the potential of reducing not only  
radiation exposure as well as uncertainties introduced  
by CT-MRI registration but also additional work and costs.  
The major challenge for such an MR-only workflow is  
the development of so called pseudo-CT images for  
accurate dose calculation and planning. However, a  
number of techniques have been proposed for generating 
synthetic CTs from MRI data. Initial promising results for 
treatment planning of brain, prostate, head-and-neck,  
and pelvic tumors have already been published [31].  
These studies illustrated that MR-only based radiotherapy 
might not only promise superior target delineation but also 
the potential for equivalent treatment planning. In future, 
the leading role of CT in radiotherapy might be replaced by 
MRI with its numerous advantages.

Despite the potential benefits of MR-guided radiotherapy, 
significant improvements are needed before widespread 
adoption and implementation. Available autosegmentation 
programs require significant manual adjustments, extending 
treatment times and increasing the risk of intrafractional 
motion; this is actually one reason why currently MR- 
guided radiotherapy primarily focus on hypofractionated 
stereotactic treatment of small lesions: due to the sharp 
dose gradient in stereotactic radiotherapy, re-contouring 
and re-optimization of daily plans can be quickly performed 
by only adapting those structures in close proximity to  
the target volume – a technique which can only partly  
be transferred to conventionally fractionated radiation  
of larger target volumes [11]. Furthermore, software tools  
for deformable dose accumulation are lacking, such as 
dose summation of different adapted fractions with  
varying organ and tumor volumes. Hence, the cumulative 
dose with dose maximum, minimum, and mean for every 
organ at risk cannot be provided, deterring any possibility 
of re-irradiation in the future. 

Given that MR-guided adaptive radiotherapy  
requires significant time as well as an experienced team  
of professionals, clinical trials are needed to identify  
which patients will benefit most from adaptive treatment.  
However, direct comparisons between CT- and MR-guided 
adaptive radiotherapy using conventional fractionation 
may not accurately capture the true potential of MR-guided 
adaptive radiotherapy, given that MR-guided adaptive  
radiotherapy allows for high dose delivery under circum-
stances which would not otherwise be possible with  
conventional techniques [27]. 
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Although there are many remaining challenges, MR-guided 
adaptive radiotherapy offers an unique chance for  
customized, daily individualized radiotherapy for further  
reducing side-effects in cancer therapy and improving  
tumor control and survival. 

I hope you enjoy reading about the many new advances 
in MR in RT that we present to you in this magazine.

Jürgen Debus
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