
Deep Learning for  
Parallel MRI Reconstruction:  
Overview, Challenges, and Opportunities 
Kerstin Hammernik1,2; Florian Knoll3; Daniel Rueckert1

1Department of Computing, Imperial College London, United Kingdom
2Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria
3Department of Radiology, New York University, New York, NY, USA

With the success of parallel imaging [1–4] and compressed 
sensing [5–7], we have achieved a breakthrough in the 
field of routine clinical MR imaging to tremendously accel-
erate the inherently slow acquisition process. However, 
with the currently available technologies, we have reached 
a plateau in terms of acquisition speed. The next paradigm 
shift is already looming: During the past years, we have 
seen a tremendous development and impressive results  
of deep learning [8] algorithms in the field of medical  
imaging. There are many opportunities how deep learning 
tools can change the world of clinical examinations, rang-
ing from precision medicine, computer aided diagnosis, 
image classification and segmentation to data acquisition 
and image reconstruction. Deep learning leverages the  
potential to change the complete workflow of clinical  
imaging, however, many algorithms have been developed 
regardless of practical relevance. In this article, we focus 

on the application of deep learning tools for parallel MR 
image reconstruction. We show how the limits of acquisi-
tion speed in MR imaging can be pushed even further, with 
improved image quality and reduced image reconstruction 
times compared to current state-of-the-art methods and 
we provide insights into this highly demanding, clinical  
standard application from different perspectives.

Deep learning for image reconstruction
Image reconstruction aims at recovering a clean,  
high-quality MR image from a set of acquired k-space  
measurements from multiple receiver coils. This process 
involves inverse Fourier transforms to map the measured 
k-space data to the image space. However, this is an  
ill-posed problem due to measurement errors, low signal-
to-noise ratios, sparsely sampled data and limitations of 
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1   Overview of deep learning for parallel MR image reconstruction.
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the hardware itself. Two great categories exist for MR  
image reconstruction, which are in fact closely related: 
Sensitivity encoding (SENSE) [1, 2] operates in image  
domain, while generalized autocalibrating partial parallel 
acquisitions (GRAPPA) [3] fills the missing information  
of undersampled acquisitions in k-space. Similar to the 
question if one would prefer SENSE or GRAPPA for image 
reconstruction, deep learning can improve image recon-
struction both in k-space and image space. In this article, 
we introduce the basic idea of how deep learning can be 
used for parallel MR image reconstruction, which is illus-
trated in Figure 1. We refer the interested reader to [9, 10] 
for a more detailed insight into this topic.

Learning k-space enhancement
To learn improved k-space enhancement, both supervised 
learning methods that depend on training data and self- 
supervised methods, that learn an interpolation function 
from the fully sampled autocalibration lines, are reported. 
DeepSPIRiT [11] is based on k-space convolutional neural 
networks (CNN) that are trained on a reference database 
and does not depend on explicit coil sensitivity maps, 
k-space interpolation kernels or collection of autocalibra-
tion lines. In contrast, GRAPPA-based methods learn a  
relationship between the coils from an autocalibration  
signal. While GRAPPA, which is the most clinically used  
reconstruction method, is based on linear kernel methods 
and known to suffer from severe noise amplification at 
higher acceleration rates, it was improved by non-linear 
kernel methods (RAKI) [12]. RAKI is based on training a 
CNN from the autocalibration signal to interpolate missing 
k-space lines, resulting in less severe noise amplification 
compared to GRAPPA as illustrated in Figure 2.

Learning image enhancement
The first group of image-based algorithms learns to  
enhance a, possibly coil-sensitivity-weighted, zero-filling 
solution [13–18]. The zero-filling solution is mapped to a 

fully-sampled reference and does not require any further 
prior knowledge, hence, consistency to the measured 
k-space data is not ensured. To train these architectures 
successfully, large amounts of training samples and huge 
network architectures are required.

Learning the direct transform
The second group of image-based algorithms directly  
learn a transformation from the undersampled k-space 
data to the fully sampled image. This approach was pre-
sented as AUTOMAP by Zhu et al. [19] and is especially 
useful to overcome errors in the physical model, i.e.,  
imperfect forward operator. The AUTOMAP architecture  
is characterized by a combination of fully-connected layers 
with convolutional layers on top and can be applied to  
any sampling trajectory in MR. The training requires a huge 
amount of memory due to the fully connected layers, 
hence, AUTOMAP is limited to small image size. This scalea-
bility issue can be improved by decomposing AUTOMAP as 
shown in [20]. Although preliminary results are promising, 
it is practically not applicable yet as the trained networks 
are limited to specific input sizes which do not meet the  
requirements for heterogeneous training data in clinical 
practise.

Learning unrolled optimization
The third and largest group of image-based algorithms 
learns a fixed unrolled scheme in a supervised end-to-end 
manner. These fixed, unrolled schemes alternately update 
the image and impose data consistency. Data consistency 
can be realized in various ways: By performing gradient 
steps as in Variational Networks [21] or by solving the 
proximal mapping [22, 23]. We also find various other  
optimization schemes, not only for parallel MRI reconstruc-
tion, but for medical imaging in general. These schemes 
range from ADMM-net [24] to variable-splitting schemes 
[25] and primal-dual optimization [26]. 

Reference (RSS) GRAPPA SPIRiT RAKI

2  � GRAPPA-type reconstructions for 4-fold Cartesian undersampling: Comparison of classic GRAPPA, SPIRiT [32] and learning-based RAKI [12]  
to the root-sum-of-squares (RSS) reference. While GRAPPA suffers from residual artifacts and SPIRiT from noise amplification, RAKI  
reconstructions achieve both better noise suppression and less residual artifacts. This observation is supported by the quantitative values.
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An example for the impact of learning unrolled optimiza-
tion for accelerated Cartesian imaging is depicted in  
Figure 3. Here, a variational network reconstruction [21]  
is compared to a linear CG-SENSE reconstruction [1] and  
a combined parallel-imaging-compressed sensing (PI-CS) 
approach [27]. We can clearly see the benefits of the  
learning-based reconstruction algorithm.

Another question which arises at this stage is if it  
is really necessary to incorporate the original k-space  
data into the learning-based reconstruction process or  
if learning image enhancement is enough. A first answer  
to this question is depicted in Figure 4. Here, a Unet [28] 
architecture is trained to enhance an initial sensitivity- 
combined zero-filling solution [16]. This architecture  
has about 14 million parameters. In comparison, a simple 
variational network with 140,000 parameters was trained 
as an unrolled gradient descent scheme with 10 iterations 
according to [21]. Indeed, we observe that the learned  

Reference

3  � SENSE-type reconstructions for 4-fold Cartesian undersampling. Comparison of linear CG-SENSE reconstruction, a parallel imaging- 
compressed sensing combined Total Generalized Variation (PI-CS TGV) reconstruction [27], and a learning-based Variational Network (VN) 
reconstruction [21]. The learning-based VN approach reaches superior image quality and reduced artifacts.

Zero Filling CG-SENSE PI-CS TGV VN

4  � Comparison of learning-based image enhancement with a Unet to learning-based image reconstruction with a variational network (VN).  
The VN that uses the acquired k-space data achieves better SSIM scores and has only a fraction (1%) of the parameters compared to the Unet.

Enhancement: Unet Reconstruction: VN Reference

unrolled scheme outperforms the image enhancing  
network, hence, it is beneficial to include any available  
prior knowledge in the reconstruction process, which 
makes the learning task easier and might require less  
training data to achieve descent results.

High demands for learning-based  
MRI reconstruction approaches
Many research papers show promising results for  
learning-based MR image reconstruction, however, these 
results are often presented for a specific sequence and a 
simulated environment, e.g., single-coil MR data. We also 
feel that the image content for a specific sequence is very 
similar over a wide range of data. In fact, the data is highly 
inhomogenous and the radiologists’ expectations differ 
from the researchers’ perspective in terms of evaluation. 

12 siemens.com/magnetom-world

MAGNETOM Flash (75) 4/2019MAGNETOM Flash (75) 4/2019AI in MR



More than inverse Fourier transforms 
When addressing MR data we often have a simplified  
picture in mind, telling us that we just have to perform  
an inverse Fourier transform to obtain the reconstructed  
image. Indeed, inverse Fourier transforms are the main  
ingredient for image reconstruction, however, many more 
aspects have to be considered when building learing-based  
solutions. The data are acquired in Fourier domain, hence, 
are complex-valued, which has to be addressed. A common 
approach here is to handle the complex-valued images as  
a two-channel real image. Further research points towards 
addressing the complex-valued issue by complex  
convolutions and complex activations [29]. 

In the case of SENSE-based approaches, the explicit  
estimation of coil sensitivity maps is still a pre-processing 
step and the final reconstruction quality highly depends on 
the quality of the coil sensitivity maps. The joint estimation 
of reconstructed image and coil sensitivity maps is still an 
open question in deep learning.

Heterogenous MRI data acquisition
Case study
A 42-year-old female patient had to undergo a clinical knee 
examination. The patient was referred to institution A, 
where a full clinical protocol (consisting of coronal PDw, 
coronal PDw with fat saturation, sagittal PDw, sagittal T2w 
with fat-saturation, axial T2w with fat saturation) was ac-
quired using a 3T MAGNETOM Skyra (Siemens Healthcare, 
Erlangen, Germany) and a 15-channel knee coil. The  
patient moved to another country and had to undergo  
further treatment due to reappearing medical issues at  
institution B, where the same clinical protocol was acquired 
using a 1.5T MAGNETOM Aera (Siemens Healthcare,  
Erlangen, Germany) and a 15-channel knee coil. The pa-
tient, who is a computer scientist, was astonished when 
comparing the two protocols: Why do the images have  
different size? Why are some parts of the knee cropped  
and folded back on the other side in certain images of  

institution A? Why is so much noise in the images of  
institution B? You can hardly see anything! Why are  
there some artifacts in the images of institution A?

Using this case study, we can already identify common 
challenges in every day clinical MRI examinations: There  
is no universal acquisition scheme and even standard  
acquisition protocols vary not only from institution to  
institution, but also within the institution. These variations  
include changes in sequence parameters, matrix size, and 
base resolution. Furthermore, the radiographers acquiring 
the images have to adapt characteristic parameters individ-
ually for each patient. This includes for example the setting 
for phase encoding oversampling to ensure that the entire 
field-of-view is considered during acquisition and no  
backfolding occurs. Not only the sequence setting but also 
the hardware setting itself has a huge impact on the final  
image quality. The image quality depends on the coil load 
and the field strength of the MRI scanner. Other sources 
that influence the image quality are any kind of artifacts, 
including patient motion. The fastMRI dataset [16] is a 
great example for a heterogeneous dataset. The protocols 
for this dataset were adapted to fit the individual scanner 
hardware and imaged patient as optimal as possible.  
Figure 5 shows examples from this dataset for varying  
field strengths, noise levels and artifacts. The images have 
a different dimension in phase encoding (x) direction. The 
number of phase encoding steps are individually adjusted 
during acquisition, hence, introduce another degree of  
inhomogeneity for learning-based reconstruction  
approaches. 

We see that learning-based approaches have to deal 
with highly heterogeneous data. Most of the currently 
available approaches are tested on high SNR data of the 
same scanner and sequence. Furthermore, for supervised 
learning approaches, we have to define a “ground truth” 
reconstruction. This becomes even more challenging, 
when an additional dynamic component is added or  
quantitative imaging is performed using learning-based  
approaches. 

5  � Examples of coronal PD-weighted knee scans with fat saturation from the fastMRI dataset [16]. The dataset contains heterogeneous data in 
terms of varying field strength, number of phase encoding steps and artifacts.

Skyra (3T) Skyra (3T) Skyra (3T) Skyra (3T) Aera (1.5T)

typical image quality noisy different noise, artifact FoV issue, backfolding acquisition artifacts
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Researchers’ evaluation
From a researchers’ perspective, quantitative evaluation 
metrics are required to benchmark different approaches 
objectively. Common evaluation metrics here are the  
Peak-Signal-to-Noise ratio (PSNR) or the Structural  
Similarity Index (SSIM) [30]. Furthermore, supervised  
machine learning approaches require a qualitative image 
metric for network training which is reflected in the final 
image quality. The major drawback of most commonly 
used quantitative image metrics is their over-smoothing 
behaviour and the incapability to reflect small, subtle  
details in the metric. The images might have high quantita-
tive scores, but appear unpleasant from a radiologists’  
perspective, hence, the insights into the true nature of  
MR images are still limited. Another obvious issue is to 
compare GRAPPA-based and SENSE-based algorithms,  
especially when no additional noise measurement is  
available to obtain the optimal weighting between the  
individual coils. Although Figures 2 and 3 show the same 
image slice, they cannot be compared directly as in this 
case the SENSE-based algorithms require explicit coil  
sensitivity maps and GRAPPA-based methods use implicit 
coil sensitivities for reconstruction. Hence, it is still an  
open question how to compare these algorithms from  
a researchers’ perspective and it might require a more  
thorough evaluation of radiologists. 

Radiologists’ evaluation
In a diagnostic setting, the evaluation of diagnostic  
content, hence, the presence or absence of small subtle 
structures is inevitable. This requires large-scale studies  
to prove if all information are still available for the correct 
diagnosis if the acquisitions are accelerated. This includes  
a subjective evaluation of the image quality itself: Many 
learning-based approaches suffer from blurred images  
and residual artifacts, however, are these degraded images  
sufficient for correct diagnosis? Up to now, only small-scale 
studies in terms of image quality [21] and diagnostic con-
tent [31] were performed. Future opportunities include  
an evaluation on more diverse MR data, sample size and 
imaging exams.

Opportunities
A major concern in deep learning for medical imaging in 
general is the need for big data itself. While for computer 
vision applications, large databases and benchmarks  
exist, big data are only slowly arriving in medical imaging, 
mostly associated with dedicated image challenges. In  
the field of image reconstruction, the fastMRI dataset [16] 
provides a huge step towards a more generalized raw data 
archive, currently containing about 1000 fully sampled 
knee training datasets acquired with different Siemens 
Healthineers scanners. This rises the questions if we  

can train a universal network that is able to deal with  
the heterogeneous data, various anatomies and intra-/ 
inter-vendor hardware settings. Are we able to train a  
universal network? Or might semi-supervised and unsuper-
vised approaches provide a way to adapt to patient- and 
acquisition-specific clinical scenarios? 

We experience that deep learning, and artificial  
intelligence in general, have the capability to change the 
complete imaging workflow in radiology. However, many 
of the existing approaches so far are based on simulated 
scenarios and have limited clinical value. Considering par-
allel imaging in image reconstruction provides a first step 
towards clinical applicability. While we focus here only  
on imaging data, there is also a vast amount of medical  
records, patients’ history and even other sensor data  
available, which might be included and improve the image 
acquisition and reconstruction workflow. 

Conclusion
The current developments in deep learning for medical  
image reconstruction reminds one of the hype we have  
experienced with compressed sensing. While compressed 
sensing started to change image reconstruction almost  
20 years ago, it is only now a commercial product and  
established in clinical routine. Similarly, deep learning  
approaches for image reconstruction are not yet estab-
lished in clinical examinations and will require a thorough 
evaluation, but they already provide a huge potential for 
the future of MR image reconstruction.
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