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Magnetic Resonance Fingerprinting in brief
Magnetic Resonance Fingerprinting (MRF)1 is a fast and  
precise technique for multiparametric quantitative MRI [1]. 
With MRF several tissue properties can be identified simul-
taneously in a single acquisition. Sequence parameters  
are varied pseudorandomly throughout the acquisition,  
to generate distinguishable tissue signals. These measured 
signals are then compared with a dictionary of pre- 
simulated signals. Each signal is unique and can therefore 
be considered a fingerprint for certain tissue properties. 
Comparing a measured fingerprint with all dictionary  
entries allows the most similar simulated fingerprint  
to be identified, revealing the fingerprint’s properties.

Since its first publication in 2013, MRF has sparked 
much research interest. Besides clinical research with  
MRF, which is now facilitated by a commercially available  
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1   A sequence definition and a list of RF pulses labeled with a unique ID. The sequence definition consists of an arbitrary series of warp&TX 
events (wTX) and warp&RX events (wRX). In each wTX block the gradient moments and timing before the RF pulse are recorded, as is the 
specified RF pulse ID (linked from the RF pulse list) with its prescribed flip angle and phase. The wRX block contains information on the 
gradient moments and timing before the signal is sampled and the echo sampling time. Trajectory information can be contained or defined 
later at the scanner.

implementation, a variety of technical aspects of the  
concept and extensions have been explored. While a  
commercially available MR Fingerprinting version requires 
a high-performance integration on the scanner as well as 
thorough validation to be ready for use in clinical studies,  
it should be clear that MR Fingerprinting continues to 
evolve vividly in the research arena. This includes modify-
ing the acquisition scheme, for example with different 
k-space trajectories and extending the MRF concept to  
provide additional information such as magnetization 
transfer [2], diffusion [3], susceptibility and B0 [4] and B1+ 
[5, 6]. Another research area is optimal sequence design 
for specific MRF implementations, which can be addressed 
with optimization algorithms [7, 8].

This article sheds light on some novel developments 
driven by Siemens Healthineers. Please refer to the  
referenced literature for further reading.

1The product/feature (mentioned herein) is not commercially available in some countries. Due to regulatory reasons its future availability cannot be guaranteed.
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Promoting research: MRF development kit 
One strength of the MRF idea is the freedom to combine  
different sequences and sampling schemes to optimize  
and extend MRF. However, quantitative MRI in general  
requires carefully considered sequence design and  
attention to detail, as it is highly sensitive to deviations  
between real experiment and limited theoretical models. 
Common effects are deviations in sampling trajectory,  
inhomogeneities of B0 and B1+, and effects not included  
in the signal model in general. Much effort needs to be 
spent in programming sequences, performing simulations 
for the dictionary, and implementing reconstruction  
algorithms and further infrastructure to handle the large 
amount of data, using performant data structures and  
interfaces. Some specific pitfalls are:
• The sequence scheme is replicated offline for the  

dictionary simulation and so may deviate from the  
actual scheme played out on the scanner in small  
but crucial details, such as RF-pulse profiles or the  
exact gradient moments. This of course also applies  
to conventional mappings where a simplistic signal 
model may not reflect the physical reality.

• A variety of Bloch simulators or extended phase graph 
algorithms exist that may lead to varying results  
for the same sequence input. These can be arbitrarily 
parametrized, which might further alter results  
between different handcrafted simulators.

• Once there is more than a single MRF version  
employed, special provisions are required to safely  
link each measured raw data file to the corresponding  
dictionary file. The same applies to changes of  
sequence parameters “on the fly”, which may render 
the designated dictionary invalid. Reconstructions  
with a wrong dictionary will result in wrong mapping 
results, and the error may be hard to detect, so this 
must be avoided.

To simplify and harmonize the development of novel MRF 
implementations, we provide a framework that elegantly 
solves the aforementioned problems. This framework  
provides data structures for describing an MR sequence  
in a generic way.

A sequence is described by a chain of warp&TX (wTX) 
and warp&RX (wRX) blocks (Fig. 1). A wTX block consists 
of the gradient moments before a transmit pulse, as well 
as the gradient during the pulse, and the pulse ID. RF  
pulses can be stored in a different data structure, so that 
the same RF pulse can be used in multiple wTX events  
(Fig. 1). The wRX events contain similar gradient moment  
information, and also information about when signals are 
to be sampled. Blocks can contain trajectory information, 
but generally do not need to, because the assumption  
underlying today’s MRF approaches is that simulated  
fingerprints are independent of in-plane pixel position –  
so trajectory information is usually not important for signal 
generation or for simulation, and it can be defined later  
directly at the scanner.

This sequence definition can be represented by a  
simple data structure, which can be easily filled using  
different programming languages such as Python, C++  
and MATLAB. Together with a definable set of tissues,  
and ranges for physical parameters such as T1, T2, and 
B1+, it is then handed over to a fast C++ standalone  
Bloch simulator that rapidly creates a dictionary.

Both the sequence definition and dictionary are then 
wrapped together into an MRF container (Fig. 2). This  
container can be run on the scanner using an interpreter 
that executes the sequence definition. Acquired data is  
reconstructed in the ICE (Image Calculation Environment) 
environment utilizing the dictionary stored in the  
container, and finally DICOM images are generated.

The package facilitates the development of new MRF 
applications, and especially their direct application in  
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2   An MRF container with sequence definition and corresponding dictionary can be loaded onto the scanner. The sequence definition  
is interpreted and executed, and then tissue parameters are reconstructed using the dictionary for this sequence directly in ICE,  
generating DICOM maps.
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clinical studies, due to its full scanner integration.  
Users also benefit from other features such as integrated 
correction methods for non-Cartesian sampling trajecto-
ries, and advanced reconstruction methods described  
later in this article.

One convenient and beginner-friendly application  
is parametrizing a spiral FISP MRF [9] sequence (Fig. 3). 
The user can specify repetition times, flip angles and 
phases of the pulses, as well as the parameters T1, T2,  
and B1+. A C++ standalone program then writes a FISP 
MRF sequence definition and dictionary files, which can  
be simply copied to the scanner for execution.

3D MRF
The framework idea also applies to 3D sequences.  
3D acquisitions provide significant speedup and improved  
resolution for MRF. In addition to higher signal to noise  
ratio (SNR), a potentially more efficient undersampling 
along all three spatial dimensions can be employed. Exam-
ples are 3D Cartesian [10] or spiral projection sampling 
schemes. A 3D spiral stack FISP MRF sequence has recently 
been successfully applied in clinical studies for detecting 
epileptic lesions [11] and hippocampal sclerosis [12].

Input
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Dictionary parameters:
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FISP sequence definition
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3   Example of a user-friendly use case for the MRF development kit. The user defines repetition time (TR), flip angle (FA) and pulse phase (PH) 
arrays, RF pulses, and the dictionary parameter ranges for T1, T2, and B1. With this information a precompiled program writes a spiral FISP 
MRF sequence definition, calculates the matching dictionary, and packs both together into an MRF container. 

Novel reconstruction methods for MRF
MRF estimates parameter maps from highly undersampled 
signals. Assuming that spatial undersampling artifacts  
can be treated as noise in the temporal signal domain,  
dictionary matching can even be performed without any 
further measures. However, more advanced techniques 
aim to reconstruct better quality parameter maps by taking 
the effect of undersampling into account. An example  
is CS-MRF [13] which is an iterative gradient proximal  
algorithm for MRF, that uses the concepts of compressed 
sensing. An estimated image series is calculated in three 
steps: a gradient step to enforce data consistency; finger-
print dictionary matching; and spatial regularization via  
total variation regularization. CS-MRF extends the iterative 
reconstruction algorithm AIR MRF [14] with this spatial  
regularization. This provides parameter maps free of  
undersampling artifacts, as well as maps with lower noise, 
while fine structures and boundaries between tissues are 
preserved. Figure 4 shows an example of a volunteer’s 
brain acquired at 3 mm slice thickness (acquisition time  
per slice: 21 seconds at 1 mm in-plane resolution)  
reconstructed with and without CS-MRF. Especially fine  
details are better visible, and the overall image impression 
is better with CS-MRF due to reduced noise.
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Another challenge for MRF reconstructions is the high  
computational effort, in particular if the dictionary  
increases in size. Every measured signal must be compared 
with every dictionary entry. Since every dictionary can  
only have a finite number of entries, the resulting maps  
are limited to this discrete set of entries, and are therefore  
intrinsically inaccurate. Furthermore, the more entries  
the dictionary contains, the more reconstruction time  
is required. Deep learning (DL) can be used to provide  
continuous parameter estimations, accelerate the MRF  
reconstruction process, and eliminate the burden of  
high storage requirements during the reconstruction.  
Reconstruction with DL algorithm is performed by passing 
the signal (or a set of signals from e.g., neighboring voxels) 
through a network, which predicts the T1 and T2 relaxation 
times from the input. Proposed approaches include fully 
connected neural networks (FCNs) and convolutional  
neural networks (CNNs). However, even state-of-the-art  
DL algorithms have their drawbacks. FCNs tend to overfit 
because of the huge number of optimizable parameters. 
CNNs are not optimally suited for time-resolved tasks.

To overcome these limitations, we recently evaluated  
recurrent neural networks (RNNs) due to their ability to 
better capture the continuous time dependency in typical 
MRF signals [15, 16]. RNNs (Fig. 5) were evaluated on  

in vivo data from several volunteers’ brains. The results  
show that with this approach, precise parameter maps  
can be reconstructed in an extremely short time. RNNs  
are especially promising for large dictionaries comprising  
multiple dimensions, where conventional matching  
algorithms are limited due to the exponential character  
of the problem. Another promising approach is to separate 
the DL reconstruction into two networks: a first artifact  
reduction network cleans and restores the input signals, 
which are then fed into the regression network [17].

Motion detection for MRF
Motion artifacts in MRI are usually accompanied by  
visible image artifacts. In quantitative MRI, results may  
be affected in a more subtle way: values in the parametric 
maps can be corrupted without obvious hints in the  
appearance of the maps. MRF has a certain inherent  
robustness regarding motion due to the applied pattern 
matching approach. However, while MRF is indeed fairly 
insensitive to in-plane motion (as excited signal remains  
in the imaging plane), several works suggest that 2D FISP 
MRF is more sensitive to strong through-plane motion (as 
new spins enter the imaging plane during the acquisition).

4   Top row: conventionally reconstructed FISP MRF T1 (first column) and T2 (second column) maps (21 seconds acquisition time per slice, slice 
thickness 3 mm, in-plane resolution 1 mm) with a zoomed excerpt on the right. Bottom row: The same slice parameter maps reconstructed 
using CS-AIR have substantially less noise while image details and tissue boundaries are preserved as observable in the excerpt on the right.

T2T1
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5   Architecture of the neural network for quantifying T1 and T2 from signals in MRF. A patch of complex signals is used as input and  
fed through a recurrent neural network (RNN) plus a quantile layer. (LSTM: long-short-term memory layer, FC: fully connected layer)

6   Exemplary residual maps (rel. deviation in %) obtained from patient brain MRF scans. 6A–D show residual maps where no motion occurred. 
6E shows a pattern that corresponds to slight nodding; 6F and G medium nodding; 6H strong nodding. 6I and J show tilting of the head.  
6K shows a slight stretching movement, and 6L a strong one.
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Consequently, there should be a way to at least detect  
the presence of motion-related errors. A prototype method 
[18] demonstrates that this is feasible without any addi-
tional navigator scans or camera devices. It relies on the 
fact that bulk movement of the head is rigid (flowing  
CSF is not considered), and that signal alterations due  
to motion have high frequency compared with dictionary  
signals. The concept consists in comparing measured  
signals with the corresponding matched dictionary signals  
at different timepoints. This is possible due to the high  
sampling rate of spiral FISP MRF [9], where approximately  
every 600 microseconds a fully sampled image can be  
reconstructed from a set of single spiral frames.

These images do not provide a well-defined contrast, 
as the signal in MRF also varies strongly on short time 
scales, but they do enable the calculation of spatially and 
temporally resolved residuals with respect to the predicted 
ideal signal from the dictionary. These residuals exhibit  
certain patterns characteristic of typical head movements 
such as nodding, tilting, and stretching. Examples are 
shown in Figure 6. These can be evaluated manually or  
automatically, using a fitting algorithm such as a neural 
network. By doing a weighted sum of all detected motion 
patterns, an overall estimate (non, low, medium, strong)  
of the motion effect in a slice can be determined.

The technique was evaluated in volunteers and  
32 patients with suspicion of glioma. Two MRF acquisitions 
were performed, so the difference between the two  
acquisitions could be related to the detected motion. 
Where there was no detected motion, the average  
difference of parameter values from the two acquisitions  
was approximately 2%. For acquisition pairs where one  
was not motion corrupted and the other exhibited low,  
medium, or strong motion, the average differences were 
3%, 5% and 25% respectively. With the help of the algo-
rithm, motion corrupted scans could be identified reliably. 
Overall in 77% of all measured slices no motion, in 8.8% 
low motion, in 9.4% medium motion, and in 4.8% strong 
motion was detected.
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