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Introduction
For more than a decade, magnetic resonance imaging 
(MRI) has been established as a powerful tool for prostate 
cancer diagnosis. The PROMIS study has demonstrated  
that prostate MRI is a suitable triage tool for biopsy-naïve 
men, reducing the number of unnecessary biopsies by  
a quarter while improving the detection of clinically signifi-
cant cancer [1]. The PRECISION study randomized patients 
to either systematic biopsies or MRI; with no biopsy if  
MRI was negative, and targeted biopsy if MRI was positive.  
Targeted biopsies guided by MRI detected significantly 
more clinically significant cancers while reducing the  
number of clinically insignificant cancers [2]. Because  
of these findings, MRI for prostate cancer diagnosis has  
been integrated into established guidelines [3]. 

Increasing demand for prostate MRI examinations can 
be expected, as the incidence of prostate cancer increases 
with age and life-expectancy in developed countries is  
rising. Furthermore, prostate MRI has been discussed in  
the literature as a screening tool, similar to breast cancer 
screening [4]. However, several limitations need to be  
addressed in order to prepare for this increasing prostate 
MRI workload. Variation in MRI data acquisitions could be 
reduced [5]. Another limitation is the relatively long acqui-
sition time of multiparametric MRI examinations (mpMRI) 
employing T2-weighted (T2w), diffusion-weighted imaging 
(DWI) and dynamic-contrast enhanced (DCE) MRI. Several 
studies have shown that an approach without DCE MRI, 
called biparametric MRI (bpMRI), yields comparable results 
to mpMRI of the prostate [6]. Potentially even more  
important topic is the varying interpretation performance 

based on the expertise level. However, even among expert 
radiologists, agreement on prostate cancer classification 
based on established guidelines is imperfect [7, 8]. 

This all points to a clear need for 
1.	 Efficient, reproducible, and robust data  

acquisition workflow 
2.	 Optimized and fast sequence design 
3.	 Automated detection, classification, and reporting 

workflows in prostate MRI examinations

1  � Image acquisition using the Prostate Dot Engine1 including 
automated prostate contour detection, prostate centering, field  
of view adaption and three-dimensional correction of spatial axes.
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1�Work in progress: the application is currently under development and is not for 
sale in the U.S. and in other countries. Its future availability cannot be ensured.

This is a chain of independent, yet highly interlinked  
stages. Well-registered and reformatted images with  
reproducible high image quality are a key prerequisite  
for optimal and reproducible artificial intelligence- 
based analyses.

In this article, we outline an end-to-end solution  
that addresses all the limitations above, incorporating  
day optimizing throughput (Dot), ultrashort bpMRI  
and deep-learning-based lesion detection, classification 
and reporting. We present two example cases using  
the proposed workflow in order to illustrate its feasibility.

Material and methods
Prostate Dot Engine
The Prostate Dot Engine1 is a prototype software tool  
designed to provide a fast, robust, and standardized image 
acquisition workflow. After acquiring the Turbo-Spin Echo 
(TSE) scout, the Prostate Dot automatically centers the 
prostate in the field of view, adapts the size of the field  
of view and performs a three-dimensional correction of 
spatial axes. Slices can be aligned either strictly orthogonal 
or automatically defined by the orientation of the urethra, 
i.e., perpendicular to the urethra for the axial planes.  
Furthermore, the prostate is segmented for standardized 
volume assessment. After coil placement, the Dot work-
flow does not require further adaptations by technicians, 
and it allows interruptions and corrections of the scan  
process at any time. A screenshot of the Prostate Dot  
Engine can be found in Figure 1.

Sequence specifications
The biparametric protocol consists of a T2-weighted turbo 
spin-echo (TSE) pulse sequence in axial, sagittal and  
coronal orientations and an improved single shot DWI EPI 
sequence (ZOOMitPRO, Siemens Healthcare, Erlangen,  
Germany) with consecutive computation of the apparent 
diffusion coefficient. Unlike other DWI techniques,  
ZOOMitPRO magnifies the prostate (in the phase-encoding 
direction) and is free of infolding artifacts. Either a smaller 
quadratic FOV or only a reduced FOV in the phase-encod-
ing direction (‘stripe’) is excited (see Figure 2A). As there  
is no signal from the non-excited regions, only the small 
stripe needs to be encoded (see Figures 2B, C). That  
means the encoding time can be decreased while main-
taining spatial resolution, or the spatial resolution can  
be increased, or a combination of the two. Furthermore,  
decreased encoding time reduces spatial distortion.

Prostate AI
The output of the Prostate Dot Engine goes into the AI  
prototype (Prostate AI1, Siemens Healthcare, Erlangen,  
Germany) for fully automatic prostate lesion detection, 
classification and reporting.

As illustrated in Figure 3, Prostate AI contains two parts:
1.	 A preprocessing pipeline 
2.	 A component for lesion detection and classification, 

based on deep learning
The preprocessing pipeline takes the acquired bpMRI  
sequences and generates the required well-formatted  
and transformed data volumes. From the DWI series, a  
logarithmic extrapolation method is adopted to compute  
a new DWI volume with b-value of 2000 s/mm2. This step 

2  � Single-shot DWI EPI sequence (ZOOMitPRO) with image examples from one study object: (2A) reduced FOV in phase-encoding direction  
(blue stripe); (2B) resulting image in comparison to (2C) the conventional RESOLVE technique.

2C2B2A

79siemens.com/magnetom-world

MAGNETOM Flash (76) 1/2020 Oncological Imaging



3  � Image acquisition workflow using the automated Prostate Dot Engine and biparametric imaging (orange); deep learning architecture with 
preprocessing pipeline (gray); deep learning-based lesion detection and classification component (blue).

Dot = day optimizing throughput, FOV = field of view, 3D = three-dimensional, TA = time of acquisition, DICOM = Digital Imaging and Communications in Medicine,  
ADC = apparent diffusion coefficient, FP = false positive, PI-RADS = Prostate Imaging Reporting- and Data System
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can eliminate the b-value variances among the datasets 
and also improve lesion detection performance [10]. Also,  
apparent diffusion coefficient (ADC) maps are computed.
Next, whole-organ gland segmentation is performed on 
the T2w volume using a learning-based method as  
presented in Yang et al. [11]. After segmentation, a rigid 
registration is conducted to align T2w and DWI images. The 
preprocessing pipeline can eliminate both geometric and 
intensity variances across sequences and patient studies.

Prostate AI then automatically detects clinically rele-
vant lesions and classifies each detected lesion according 
to PI-RADS categories. This is achieved by a sequence of  
coupled deep neural networks that are trained separately. 
First, a fully convolutional localization net is able to gener-
ate a semantic lesion candidate heatmap (see Figures 5 
and 6); then a sub-volume-based false positive reduction 
net further improves detection accuracy by removing the 
false positives; finally another sub-volume-based PI-RADS 
scoring net stages the level of malignancy for each detec-
tion according to PI-RADS categories.

In a last step, Prostate AI displays the detection and 
classification results on a dedicated platform. As the ability 
of the interpreting radiologist to accept or reject AI-based 
findings has been identified as a prerequisite for adoption 
of these techniques [12], these capabilities have been  
implemented. The user is then able to create a machine- 
readable report with all relevant information for the  
referring physician (see Figure 4). This report can be sent 
to the local RIS/PACS system.

Cases
Case 1
Figures 5A-D demonstrate a lesion in the right midgland 
PZpl/PZa of a 62-year-old man, with a maximum diameter 
of 30.2 mm and a mean ADC-value of 758 µm²/s.  
Prostate AI detected the lesion and assigned a PI-RADS 5  
category. Biopsy results revealed a Gleason 4+3 = 7  
pattern.

4  � Data visualization platform with the T2w images, ADC map, and high b-value image as well as the T2w image overlaid with the AI-generated 
heatmap (in red and yellow). Prostate AI automatically detected the suspect lesion in the transition zone (TZ, yellow dot) and pre-populated all 
relevant information according to current PI-RADS guidelines. Next, a machine-readable report based on this information is generated.

5A 5B

5C 5D
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Case 2
Figures 6A-D demonstrate a lesion in the left apical PZpl  
of a 51-year-old man, with a maximum diameter of  
10.2 mm and a mean ADC-value of 961 µm²/s. Prostate AI 
detected the lesion and assigned a PI-RADS 4 category.  
Biopsy results revealed a Gleason 3+3 = 6 pattern.

Conclusion
In this article, we outlined an end-to-end concept to allow 
a standardized workflow with a reproducible and fast data 
acquisition with optimized imaging sequences and an 
AI-empowered data analysis including automated detec-
tion, classification and reporting of suspicious lesions in  
biparametric prostate MRI examinations.

Reproducible and fast data acquisition concepts are 
not only contributing to a standardized reporting per-
formed by human readers but would also help artificial  
intelligence-based solutions to reliably process input data. 
Preliminary results from a study conducted at the Universi-
ty of Innsbruck in Austria including 50 patients referred  
for a prostate MRI examination, compared the tilting angle 
of the auto-alignment of the Prostate Dot Engine against  
axes determined manually by an experienced radiologist,  
serving as the reference-standard. The investigators were 
able to show a mean ± SD deviation of the tilting angle  
of 5.5 ± 4.4 degrees (Ch. Kremser, W. Judmaier, Med.  
Uni Innsbruck, unpublished results). However, to date, 

there is no study investigating workflow differences, such 
as time-saving metrics, between Dot-guided and conven-
tional, technician-guided workflows. Those studies are  
currently planned, and their results will contribute to reveal 
the value of Dot engines in clinical routine.

Concerning the use of abbreviated protocols consisting 
of T2-weighted and DWI only – so-called biparametric  
prostate MRI – several studies [6, 13, 14] have shown  
comparable results as obtained with conventional, mpMRI 
protocols including DCE-MRI. We added another compo-
nent to our suggested workflow, that is performing DWI 
with the ZOOMitPRO. As shown in Figure 2, ZOOMitPRO uses  
a reduced FOV in the phase-encoding direction compared 
with either standard single shot DWI EPI or RESOLVE  
(REadout Segmentation Of Long Variable Echo trains).  
The resulting decreased acquisition time can be invested  
in a superior spatial resolution. Future studies are needed 
to systematically investigate differences between different 
types of DWI acquisition schemes compared to the  
ZOOMitPRO technique.

The last component in our workflow is the use of  
AI-based lesion detection and classification. Schelb et al. 
[15] used the input from T2w sequences and DWI to train  
a deep learning algorithm (Unet) on the histopathological 
outcome, serving as ground truth. They were able to  
show that this algorithm achieved a similar performance  
to human readers using the PI-RADS assessment score.  
Cao et al. [16] used the input of mpMRI images to build a 
convolutional neural network trained on histopathological 
data and used this algorithm to detect suspicious lesions 
and to predict the Gleason score. The results were promis-
ing, with a high sensitivity for lesion detection – compara-
ble to expert human readers – and a high classification 
performance with regards to clinically significant cancer. 
However, the usefulness of these algorithms needs to be 
proven in larger multi-reader, multi-case (MRMC) studies, 
systematically examining their influence on interpretation 
performance and speed, with and without those solutions.

We have identified a need to re-structure existing  
prostate MRI workflows, as patient or – in case of screen-
ing approaches – participant throughput is expected  
to increase. In our vision, current workflows need more  
reliable, reproducible and fast data acquisition steps.  
Furthermore, recent research has shown that deep learn-
ing algorithms can compete with human intelligence in 
prostate MRI reporting. We outlined a possible end-to-end 
solution and demonstrated its feasibility with two case  
examples. Future research will investigate what impact  
the individual components or the combination of those 
components will have on the future of prostate MRI.

6A 6B
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