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Over the past 40 years, cardiovascular magnetic resonance 
(CMR) has evolved from an esoteric research tool to an  
indispensable clinical tool that routinely changes patient 
management across the breadth of modern cardiovascular 
practice. CMR is a versatile, non-invasive imaging modality 
that provides a comprehensive assessment of multiple  
parameters for cardiac function and morphology in a single 
protocol. It plays a major role in the diagnosis and manage-
ment of cardiovascular disease (CVD). The prevalence of 
CVD is increasing annually and the conditions are among 
the leading causes of morbidity and mortality worldwide. 
This requires improvements in assessing, diagnosing, treat-
ing, and monitoring CVD patients. CMR will play a central 
role in achieving these goals. However, there remain major 
challenges for the widespread use of this technique: 
(a) Complex technology with many pulse sequences  

and parameters to choose from
(b) Manual data analysis and interpretation
(c) Inherent cardiac and respiratory motion
(d) Duration of the examination

Methods using artificial intelligence (AI) have been pro-
posed to address these challenges, but have also given rise 
to new questions about the methods’ reliability, accuracy, 
generalizability, and robustness. In order to shape the  
future of CMR and establish where and how AI can play  
a role in it, we will showcase some CMR applications and 
scenarios that reflect the abovementioned challenges.  
We will highlight some AI methods for each step of the 
CMR processing chain and conclude with thoughts on  
remaining challenges and opportunities.

Learning about the heart in higher 
dimensions
CMR enables the acquisition of morphological, functional, 
and quantitative tissue parameters. Various sequences are 
devised that represent powerful tools for the non-invasive 
characterization of congenital or acquired CVDs, including 
ischemia, valvular diseases, and ischemic and non-ischemic 
cardiomyopathies. Cardiac function is commonly assessed 
with continuous acquisitions (cine, real-time) over multiple 

cardiac cycles. Perfusion imaging permits the assessment 
of physiologic and pathophysiologic functional parameters. 
First-pass perfusion is the clinical standard for measuring 
myocardial blood flow and detecting myocardial ischemia. 
Cardiac viability is traditionally studied with a gadolinium- 
based contrast agent in late gadolinium enhancement.  
Cardiovascular flow by phase-contrast imaging measures 
the velocity of blood in the cardiac chambers and great 
vessels. Coronary magnetic resonance angiography (CMRA) 
has the potential to diagnose coronary artery diseases. 
Quantitative CMR techniques like T1, T2, or T1rho mapping 
provide characterization of tissue properties that distin-
guish healthy from diseased tissue. More recently, MR  
fingerprinting1 and MR multitasking have been proposed to 
provide multi-parametric data in a continuously measured 
acquisition under a free-movement scenario (with respira-
tion and a beating heart). Multi-parametric CMR offers  
the promise of a more accurate diagnosis, early disease  
detection, and monitoring over time or of response to  
therapy [1].

These applications require either high spatial and/or 
temporal resolution, should ideally be acquired in 3D with 
whole-heart coverage to avoid slice misalignments or to 
allow reformatting into arbitrary image orientations, or  
are susceptible to cardiac and respiratory motion. The 
achievable image quality must be sufficient to detect  
and characterize CVDs, and is thus an inherent trade-off 
between imaging resolution, scan time, and signal-to-noise 
ratio (SNR), which are overall challenging requirements to 
meet. Moreover, to fully utilize the available information 
and/or to resolve the individual factors (motion, relaxivity, 
perfusion, etc.), joint data processing of all acquired data 
should be performed. This in turn yields high-dimensional 
data processing for CMR. To give an example, 5D cine  
imaging provides 3D spatial information of respiratory  
(1D) and cardiac (1D) motion-resolved data. If we jointly 
reconstruct motion-resolved data, we can share spatiotem-
poral information, i.e., sharing samples at a spatial location 

1 MR Fingerprinting is not commercially available in some countries.  
Due to regulatory reasons its future availability cannot be ensured.
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between different respiratory/cardiac motion states by  
accounting for the underlying motion between motion 
states. The benefit is increased sampling efficiency and 
higher sampling density, which in turn can result in  
improved image quality. Furthermore, high-dimensional 
data processing naturally lends itself to the combination of 
several data processing steps, as shown in Figure 1. In our 
5D cine example, the image reconstruction is combined 
with a motion correction/estimation procedure. The combi-
nation could also expand across several processing steps 
and we could develop a single AI network that performs 
this task for us. Let us say we are actually interested in  
assessing the left ventricular function using the 5D cine  
imaging. We could thus combine reconstruction, motion 
estimation, and image segmentation (to obtain left ven-
tricular functional parameters) using as input the acquired 
MR raw data and outputting the left ventricular functional 
parameters (ejection fraction, end-systolic volume, and  
so on). While joint processing has its benefits, one could 
also be interested in obtaining the intermediate results of 
this joint processing chain – to perform quality assurance, 
for instance, or to further visually assess morphology  
and function. However, depending on the selected setup,  
architecture, and scenario, this may no longer be easily 
possible. On the other hand, we could have developed  
individual and finely tuned AI networks for each of the 
tasks. For the 5D cine example, an image reconstruction 
network is followed by an image registration network that 
merges individually reconstructed motion states on which 
a subsequent image segmentation network is performed. 
Intermediate results (reconstructed image, motion fields, 
segmentation masks) would be available, but we would 
lose the possibility to share information between and  
within processing steps. 

While the concepts of joint processing sound intriguing 
and have already been studied in several research  
settings, applying them to a clinical scenario in a reliable 
fashion is challenging. Furthermore, high-dimensional  
AI-based data processing is not trivial and currently still  
limited in most cases by the available graphics processing 
unit (GPU) memory and the availability of network building 
blocks to process data beyond 3D [2].

AI forming the CMR workflow 
For a conventional CMR examination, several indi vidual  
sequences are acquired, for which different processing 
steps are conducted. These include image acquisition,  
image formation, and diagnosis, as illustrated in Figure 1. 
These processing steps could be performed individually 
with highly optimized and tuned AI networks, or several 
steps could be combined end-to-end for outputting multi-
ple results in so-called multi-tasking networks. While AI  
has the potential to improve each step of the imaging  
pipeline, it should be seen as a support for clinicians, not  
a replacement.

Scanning and planning
The most tedious and time-consuming part of CMR is  
planning the cardiac scan. The image quality depends on 
the experienced technician responsible for acquiring the 
data, and uncertainties might be introduced by incorrect 
planning. AI has the potential to speed up the whole plan-
ning workflow, resulting in increased patient comfort and 
reduced healthcare costs. Also, AI-supported planning  
allows for more standardized cardiac scans and reduces the 
complexity of cardiac view planning. Siemens Healthineers 
provides a solution for AI-based view planning with its  
myExam Cardiac Assist tool [3, 4].
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1   Overview of clinical workflow supported by several artificial intelligence (AI) methods. Different AI solutions along the imaging and processing 
chain are illustrated for cardiac cine imaging. The inputs and outputs of the proposed AI techniques are also shown.
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Image reconstruction
Traditional image reconstruction techniques suffer from 
long reconstruction times and limitations in acceleration 
under Cartesian sampling patterns. Furthermore, prior 
knowledge of the reconstructed images needs to be incor-
porated into the reconstruction procedure. However, this 
prior information is often too simple to characterize the 
complex medical images. AI provides the opportunity to 
gain this prior knowledge directly from the data. Dictionary 
learning is an early example of data-driven learning in 
Compressed Sensing (CS)-based MRI reconstruction, and 
involves learning directly from undersampled data how the 
individual dictionary entries should be combined. AI-based 
solutions now achieve image quality similar or superior  
to classic CS-based approaches, while reducing the recon-
struction time tremendously from minutes and hours to 
seconds. Furthermore, the learned priors can deal with the 
characteristic, coherent backfolding artifacts that appear  
in Cartesian sampling schemes, which are standard in the 
clinical workflow.

However, learning only a data-driven image prior is  
not enough, and special care needs to be taken with the 
acquired k-space data. While purely image-driven networks 
are able to produce realistic-looking images, the images 
themselves are not consistent with the acquired k-space 
data. We refer the interested reader to a previous article  
in MAGNETOM Flash and to book chapters [5, 6] for more 
information on how to include the acquired k-space into a 

reconstruction network. In the current article, we focus on 
the application of AI-based solutions to (high-dimensional) 
CMR, including static and dynamic imaging.

Fuin et al. proposed a multi-scale variational network 
for CMRA [7]. For this static application, the reconstruction 
time could be reduced from ~5 minutes for a CS-based  
approach to ~14 seconds for the proposed learning-based 
approaches. Comparable image quality was achieved  
between the fully sampled reference scan and the 9×  
accelerated scan. The results show that the acquisition 
time can be reduced from 18:55 minutes for the fully  
sampled reference scan to 2:34 minutes for the 9× acceler-
ated acquisition, while the image quality stays comparable. 

An alternative approach for shortening the scan time 
while simultaneously increasing spatial resolution is to  
use AI-based super resolution. Images are acquired at a low 
image resolution and retrospectively reconstructed to the 
high-resolution target. This approach has been successfully 
applied to cardiac cine [8, 9] and CMRA [10, 11].

In the context of cine image reconstruction, Schlemper 
et al. proposed a data-consistent convolutional neural  
network (CNN), performing alternating single-coil data- 
consistency steps and image denoising with a 5-layer CNN 
[12]. This approach was improved by a recurrent approach 
to propagate information through the time dimensions and 
between iterations [13]. Separated convolutions in the  
spatial domain and temporal domain further improve  
reconstruction quality, yielding more accurate functional 

2   Physics-guided deep learning-based image reconstruction for cardiac cine imaging. High imaging acceleration (15×) enables the acquisition of 
a 3D cardiac cine with isotropic resolution and left ventricular coverage in a single breath-hold of < 10 seconds. A deep learning-based image 
reconstruction, CINENet, provides high image quality in contrast to the zero-filled reconstruction (input to network) or a Compressed Sensing 
(CS) reconstruction. CINENet reconstruction of accelerated scan (9 seconds) is in good accordance with a separate (slightly accelerated, 2.5×) 
3D cine (30 seconds) and a conventional multi breath-hold 2D cine (260 seconds). The 3D cine with CINENet reconstruction shows high 
agreement with the conventional 2D cine in terms of left ventricular ejection fraction (EF).
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parameters [14] and allowing for accelerated 3D cine  
reconstruction [15]. An example for accelerated single-
breath-hold 3D cine reconstruction compared to conven-
tional multi-slice multi-breath-hold 2D reconstruction  
is depicted in Figure 2. The aforementioned approaches  
operate directly on the full image, but low-rank and sparse 
priors are less frequently studied. Building on the success 
of unrolled networks, recent works focus on learning  
a structured low-rank prior [16] or low-rank plus sparse  
decomposition [17] in the context of dynamic MRI  
reconstruction.

While most approaches apply CNNs primarily in the  
image domain, hybrid networks exploit information in 
complementary domains. Due to the dynamic component 
in cine images, we can exploit the data in various domains. 
Exploiting all available data in various spaces pushes the 
reconstruction results further. El-Rewaidy et al. use both 
k-space and image domain information for radial imaging, 
implementing CNNs in both domains [18]. Complementary 
information in k-t and x-f space was studied in Qin et al. 
[19].

All aforementioned reconstruction approaches assume 
that fully sampled training data are available. The fully 
sampled data serve as a reference during training. How-
ever, training data is not always available, and is sometimes 
even impossible to acquire. Yaman et al. proposed a self- 
supervised learning approach that uses only the acquired 
training data points, with application to late gadolinium 
enhancement as depicted in Figure 3 [20]. The sampled 
data points are split into two disjoint sets, where the first 
set is used in the data consistency units of the unrolled  
reconstruction network, and the second set is used to eval-
uate the loss function during training directly in k-space.

Image analysis
CMR image segmentation and quantitative evaluation can 
be a challenging, time-consuming, and operator-intensive 
task. Segmentation of the chambers and myocardium is a 
mandatory postprocessing task. Automation of these tasks 
can therefore significantly reduce the time required for 
CMR image assessment. 

AI-based solutions for image segmentation have been 
shown to be highly accurate and fast [21]. Considerable 
efforts have been directed toward cine imaging, as it is 
considered the gold standard for the assessment of cardiac 
chamber volumes and function [22]. The work of Morales 
et al. provided additional myocardial strain measures [23]. 
Segmentation methods have also been paired with predic-
tions of important markers for cardiovascular disease, such 
as volume of pericardial adipose tissue [24] and scar-tissue 
areas [25]. Fahmy et al. automatically quantified left ven-
tricular mass and scar volume in late gadolinium enhanced 
imaging [26], which showed strong agreement between 
the automated segmentations and the manual delinea-
tions. Farrag et al. [27] investigated the propagation of 
segmentation masks derived from cine imaging for the  
accurate segmentation of myocardial tissue in T1 mapping 
of a shMOLLI sequence. In contrast, the work of Hann et al. 
[28] segmented the myocardium directly in the shMOLLI 
data.

Segmentations have also been shown to provide  
valuable information for image reconstruction and motion 
correction tasks. Joint learning of motion estimation and 
segmentation for cine imaging was proposed by Qin et al. 
[29]. The results suggested that an efficient motion esti-
mation network can bypass the need for high-quality  
reconstructions to achieve accurate image segmentation, 

1st Slice

sli
ce

- 
GR

AP
PA

w
/o

 S
IIM

Se
lf-

su
pe

rv
ise

d 
de

ep
 

le
ar

ni
ng

 (P
G-

DL
)

w
ith

 S
IIM

LV UptakeRV Uptake Late Phase

1st Slice 1st Slice2nd Slice 2nd Slice 2nd Slice3rd Slice 3rd Slice 3rd Slice

3   Physics-guided deep learning-based image reconstruction for dynamic contrast-enhanced MRI. A three-slice myocardial perfusion in the right 
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arrows. Image courtesy of Mehmet Akçakaya.
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indicating the superiority of high-dimensional data  
processing. Sun et al. [30] proposed a unified deep  
network architecture for joint image reconstruction and 
segmentation. The reconstruction and segmentation  
networks share network parts, acting as intrinsic regular-
izers for each other, while unshared network parts act 
 specifically to the task (reconstruction or segmentation). 
Their results suggest that training a joint network is bene- 
ficial for high-quality segmentation of undersampled 
k-space data. While most multi-task networks aimed for an 
intermediate reconstructed image, Schlemper et al. [31] 
bypassed this step and directly predicted segmentation 
maps from highly undersampled dynamic CMR images  
of the UK Biobank data. Their results indicate that clinical 
parameters can be computed within an error of 10% if at 
least 10 lines are acquired for each cardiac phase using 
Cartesian sampling.

As sufficient image quality is a crucial factor in any fur-
ther downstream task, Tarroni et al. devised an automated 
cardiac quality control [32]. The heart coverage, existence 
of inter-slice motion, and myocardial to blood pool contrast 
are automatically assessed. Their findings enable a repro-
ducible and objective setting for large-scale and automated 
data processing. 

Neural networks have also been proposed for quanti ta-
tive CMR imaging to allow for accelerated myocardial tissue 
characterization. Jeelani et al. estimated quantitative T1 
maps from a MOLLI sequence [33, 34]. The work of Fahmi 
et al. paired the quantification network with a segmenta-
tion to target the maps toward the myocardium [35]. 

For multi-parametric acquisitions in MR fingerprinting, 
AI solutions have been initially proposed for non-cardiac 
applications [36] in order to bypass dictionary simulation 
and pattern matching and thereby reduce computation 
time and memory requirements. In CMR fingerprinting,  
sequence timings depend on the subject’s cardiac rhythm. 

Hamilton et al. proposed an estimation of T1 and T2 maps 
directly from undersampled spiral images showcasing rapid 
and robust predictions [37], as depicted in Figure 4.

Myocardial tissue characterization has also been stud-
ied in the context of radiomics. In radiomics, the image 
data is converted into mineable high-dimensional data  
using a large number of handcrafted features targeted  
toward the image intensity, and structural and textural  
information. These features are then used to perform  
segmentation of myocardial tissue [38], differentiate  
between acute and chronic infarction [39], differentiate 
between causes of myocardial hypertrophy [40], discrimi-
nate between hypertensive heart disease and hypertrophic 
cardiomyopathy patients [41], and quantify myocardial  
inflammation [42].

Beyond purely imaging-focused approaches, AI meth-
ods have also been used to predict outcomes in patients 
with various cardiovascular diseases [43] and identify  
relationships between cardiac morphology and non- 
imaging information as provided by genetic variations [44].

Motion correction
Physiological motion is still one of the major extrinsic 
sources of image artifacts and requires appropriate han-
dling during acquisition or reconstruction. In the case  
of CMR, we are primarily dealing with respiratory and  
cardiac motion, which result in non-rigid deformations of 
the heart and its surrounding environment. Respiratory 
motion and cardiac motion are in most solutions regarded 
as periodic, but they do not necessarily have a fixed  
frequency throughout the scan. In other words, a subject 
might hold their breath, or a heartbeat might be skipped 
and should therefore be treated as cyclic rather than peri-
odic. Simplifications in modeling and correcting motion 
may be necessary to handle the motion problem and to 
build an appropriate AI solution.
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4   Deep learning-based magnetic resonance fingerprinting (MRF) for myocardial tissue mapping [37]. A cardiac MRF sequence collects data 
within an ECG-triggered window under breath-hold from which the temporal fingerprint (measured signal) can be extracted for every voxel 
location. Together with the heart-rate interval timings, a fully connected neural network estimates the T1 and T2 values at each voxel 
location. Image courtesy of Jesse Hamilton.
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AI-based image registration methods have been proposed 
to map motion states in motion-resolved images, output-
ting a motion field of the moving anatomies. Mappings can 
be expressed between a pair of images (e.g., end-systolic 
frame to end-diastolic frame), known as pairwise registra-
tion, or between a group of images (several diastolic 
frames) to a target image (end-systolic frame), known  
as groupwise registrations. Large non-rigid motion across 
multiple temporal frames can occur, and in the case of 2D 
imaging the existence of through-plane motion compli-
cates the motion estimation process. Moreover, estimated 
motion fields should be diffeomorphic, i.e., a forward  
motion (end-systolic to end-diastolic) can be easily inverted 
to a backward motion (end-diastolic to end-systolic). 

A fast and reliable motion estimation is therefore  
required that correlates these short- and long-term corre-
spondences. AI methods have been proposed to operate 
on the reconstructed motion-resolved images (i.e., in the 
image domain) for pairwise registrations [45–47] or group-
wise registrations [48]. Alternatively, registration could be 
carried out directly on the acquired raw k-space data [49]. 
Since it is often of interest to estimate motion from as little 
data as possible (providing high temporal motion resolu-
tion), motion estimation procedures have been challenged 
with data from accelerated acquisitions [49–51]. 

Instead of outputting a motion field, joint motion- 
compensated image reconstruction networks have been 
studied. Motion estimations are embedded with the recon-
struction process in order to exploit the high-dimensional 
data [52–54], as highlighted in Figure 5. Further combina-
tions with segmentation have been studied in [55], which 
introduced a joint framework for motion artifact detection, 
correction in k-space, and image segmentation. In this  

setting, the motion correction problem is reformulated  
as a reconstruction task. The motion artifact network  
detects motion-affected lines in k-space, which are then 
signaled to the reconstruction part for removal, yielding  
a motion-corrected image from which segmentations are 
derived. The results showed that joint processing was  
superior to sequential processing.

Adversarial training strategies as proposed in [56, 57] 
aim to correct for the motion in the image domain. These 
networks consist of two parts: a generator network which 
predicts motion-corrected images from simulated motion- 
corrupted ones, and a discriminator which tries to distin-
guish between the generated motion-corrected images 
(from generator) and real motion-corrected images.  
The goal is to fool the discriminator network to generate 
images that look like real motion-corrected images.  
Alternatively, motion embeddings can be learned with  
variational autoencoders that allow to distinguish be-
tween motion-affected and motion-corrected scans [58]. 

Current challenges, opportunities,  
and limitations
CMR imaging offers a great opportunity for deep learning 
due to the redundancy and the high dimensionality of the 
data. However, we also face challenges regarding acquisi-
tion time, SNR, the trade-off between spatial and temporal 
resolutions, and different types of motion, e.g., cardiac and 
respiratory motion, which makes the application of deep 
learning techniques more demanding. While deep learning 
approaches often outperform CS-based approaches in terms  
of pixel-wise quantitative scores, these approaches might 
tend to over-blur the temporal component. How ever, a 
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increase sampling density and thereby improve image quality.
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high resolution of the temporal dynamics is crucial for  
diagnosis and to detect subtle pathologies.

When using deep learning techniques, it is challenging 
to evaluate the quality and robustness of reconstruction 
approaches, especially in the case of subtle pathologies. 
However, we might get trapped in overly optimistic results 
if we use simulated data and neglect the unprocessed raw 
k-space data [59]. In a different line of work, the robust-
ness of neural networks to small adversarial perturbations 
at the input was investigated [60]. Robustness of neural 
networks to changes in anatomy was studied in the con-
text of static 2D imaging in [61], showing that domain 
shift has a marginal impact on image reconstruction when 
using unrolled networks and moderate acceleration. This 
observation regarding domain shift is different to image 
analysis tasks, where a subtle change might lead to 
mis-segmentation, for instance.

Deep learning approaches were intensively and  
individually studied in the context of scan planning, accel-
erated acquisition and reconstruction, and image analysis. 
While we often focus only on one part of this full imaging 
pipeline, deep learning provides many more opportunities 
to improve the whole workflow of CMR image acquisition 
for analysis and diagnosis. Future investigations of deep 
learning approaches will go deeper in supporting the 
choice of exam based on actual physiological scan para-
meters such as heart rate, or on the patient information 
obtained during the scan. Deep learning techniques will 
also support further acceleration in scan time to enable  
real-time interventional cardiac MRI [62]. We also observe 
a trend towards embedding different elements of the im-
aging pipeline into a deep learning approach and training 
this network end-to-end as shown in multi-task networks, 
or exploiting the available data, e.g., via motion fields, 
which will form the future of learning-based CMR imaging.
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