

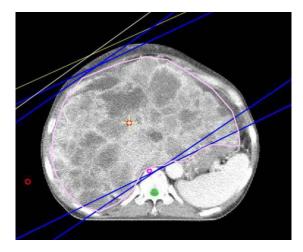
Radiotherapy for liver lesions

Ines Joye, MD PhD

AZ Klina - AZ Monica - AZ Rivierenland AZ Voorkempen - GZA Ziekenhuizen - UZA – Vitaz - ZNA

Spectrum of liver lesions

solitary/oligo



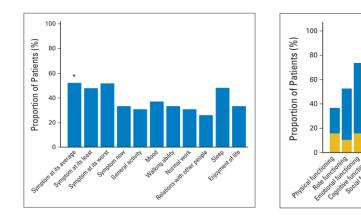
diffuse

Whole Liver RT

Yeo et al. Radiat Oncol 2010

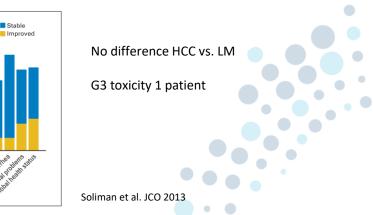
- Simple opposing-field technique, excluding one kidney from RT fields
- Different RT schedules: 30-35Gy in 1,5-3Gy/fr, but 1x8 Gy is option

Pain relief 55-80% Improvement in liver function Well tolerated, prescribe antiemetics/CS No data on better survival No evidence to combine with systemic R/

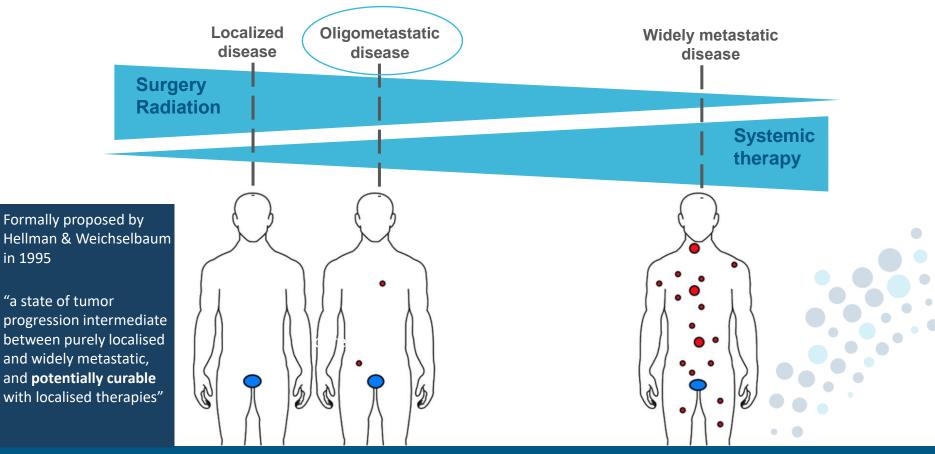

Whole Liver RT

Phase II Trial of Palliative Radiotherapy for Hepatocellular Carcinoma and Liver Metastases

Hany Soliman, Jolie Ringash, Haiyan Jiang, Kawalpreet Singh, John Kim, Robert Dinniwell, Anthony Brade, Rebecca Wong, James Brierley, Bernard Cummings, Camilla Zimmermann, and Laura A. Dawson


41 pts with **HCC (n=21) or LM (n=20) unsuitable or refractory to standard therapies** indicating pain, discomfort, nausea or fatigue

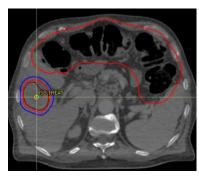
1x8 Gy to liver volume causing symptoms + 1cm (95% PTV >7 Gy; Dmax stomach, bowel, spinal cord <10 Gy); parallel opposing or oblique fields; anti-emetics

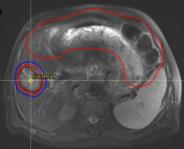


BPI

EORTC QoL-C30

Oligometastatic disease


Stereotactic Body RadioTherapy (SBRT)


A method of <u>external beam radiotherapy</u> that <u>accurately</u> delivers a <u>high dose of</u> irradiation in one or <u>few treatment fractions</u> to an extracranial target

- high dose/fraction: effective tumor cell kill due to high radiobiological effectiveness (direct effect, vasculature, antitumor immunity)
- sharp dose gradients: maximally sparing OARs
- non-invasive
- Originally from brain SRS
- Standard treatment for small lung/brain mets or early stage NSCLC
- Nowadays increasingly used for LN, liver, bony lesions; prostate and pancreatic tumors

SBRT liver

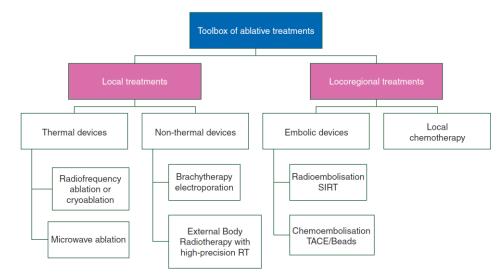
SBRT liver

- Inoperable patients
- Maximal lesion diameter 6-7 cm
- Maximal number of M+1-3
- Adequate liver function
- Life expectancy > 6m
- KI > 70

Exclusion:

- Prior abdominal radiotherapy, limiting safe liver RT within constraints
- Uncontrollable extrahepatic disease
- Active hepatitis, gross ascites
- Pregnant women

SBRT liver: advantages


- Lesions >3 cm
- Tumor location close to vessels, gallbladder or beneath diaphragm
- Short treatment time
- Non invasive, no recovery
- Favorable toxicity

	 fatigue transient liver function disturbances vague abdominal discomfort, loss of appetite, nausea ==> anti-emetics, P 	Pls	
ate:	SELDOM! rib fracture, skin redness, edema, fibrosis GI toxicity (ulcera, perforations, stenosis), biliary complications, RILD		

Liver metastases

Surgery is treatment of choice for resectable liver metastases; however only 10-15% are resectable

- R0 resection
- Sufficient liver remnant/liver function
- Location
- Comorbidities
- "Oncological resectability"

Van Cutsem, Ann Oncol 2016

JOURNAL OF CLINICAL ONCOLOGY

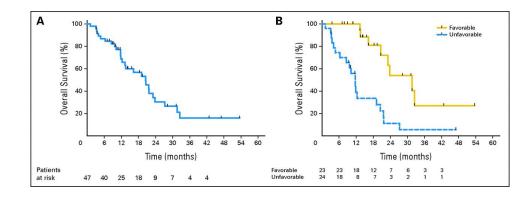
ORIGINAL REPORT

Multi-Institutional Phase I/II Trial of Stereotactic Body Radiation Therapy for Liver Metastases

Kyle E. Rusthoven, Brian D. Kavanagh, Higinia Cardenes, Volker W. Stieber, Stuart H. Burri, Steven J. Feigenberg, Mark A. Chidel, Thomas J. Pugh, Wilbur Franklin, Madeleine Kane, Laurie E. Gaspar, and Tracey E. Schefter

- 47 patients with ≤3 hepatic lesions, <6cm
- Phase 1: Dose escalation 36 Gy → 60 Gy
- Phase 2: 60 Gy
- Primary endpoint: local control
- Median follow-up: 16m

- In-field LC at 1 and 2 years: 95% and 92%
- <3cm: 2y LC 100%
- Median OS 20,5m; 2y OS 30%
- ≥G3 toxicity 2%
- No RILD


JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Multi-Institutional Phase I/II Trial of Stereotactic Body Radiation Therapy for Liver Metastases Kyle E. Rusthoven, Brian D. Kavanagh, Higinia Cardenes, Volker W. Stieber, Stuart H. Burri, Steven J. Feigenberg, Mark A. Chilel, Thomas J. Pueh, Wilhur Franklin, Madeleine Kane, Laurie E. Gaspar, and Tracev E. Schefter

OS dependent on primary

- Favorable: breast, colorectal, renal, carcinoid, GIST, sarcoma
- Unfavorable: lung, ovary, noncolorectal GI malignancies (i.e. unfavorable primary sites)

SBRT for CRLM

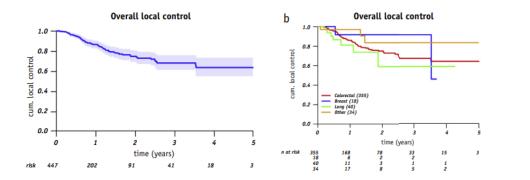
Systematic review with pooled analysis

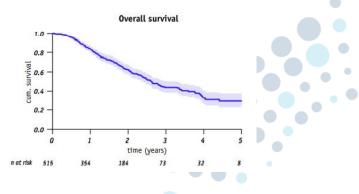
18 studies, 656 patients CRLM

OS: 67%@1y and 57% @2y LC: 67%@1y and 59%@2y

Author/year	Median OS (months)	1y OS (%)	2y OS (%)	1y LC (%)	2y LC (%)	Median PFS (months)	Liver or GI toxicity (%)		
Scorsetti/2015	29	-	65	95	91	12	G2 liver toxicity (25)		
Stintzing/2013	34.4	-	-	85	80	-	Bleeding and rising bilirubin (3)		
van de Voorde/2015	25	-	-	-	-	-	-		
van der Pool/2010	34	100	83		74	11	Liver toxicity: G3 (10), G2 (90),		
Vautravers-Dewas/2011	-	-	58	-	86	-	-		
Ahmed/2016	-	100	73	79	59	-	-		
Ambrosino/2009	-					-	G1-2 liver toxicity (36.4)		
Berber/2013	-	56	-	60	-	-	G1 fatigue and nausea (21); death $n = 1$		
Chang/2011	-	72	38	62	45	-	GI-G2 & G3 acute GI toxicity		
							17 & 3		
Mendez Romero/2016	43 & 35	94 & 95	81 & 69	90 & 96	90 & 74	-	G1-2 liver toxicity (97.5), G3 liver toxicity (7.5)		
Doi/2017	45	82.3	67.1	67.2	35.9	16 (LC time)	G1-2 liver toxicity (16), duodenal ulcer (4)		
Goodman/2016	38	95	78	93	88	10	Death $n = 1$		
Hoyer/2006	19.2	-	38	-	78	6.5 (TTP)	G3 intestinal toxicity (5), liver failure (2),		
							nausea & diarrhea G1-2 (34 & 23), G3 (3); death n = 1		
Joo/2017	-	-	75	-	-	-	G1-2 nausea (34), G1-2		
							liver toxicity (15)		
Kim/2009	25	53	40	80	60	-	G1 nausea and musculoskeletal discomfort (40)		
Lee/2009	15	63	-	-	-	3.9	-		
Liu/2013	25.2	-	-	86	67	-	-		
McPartlin/2017	16	63	26	50	32	-	G3 nausea (2)		
Petrelli, RO 2018									

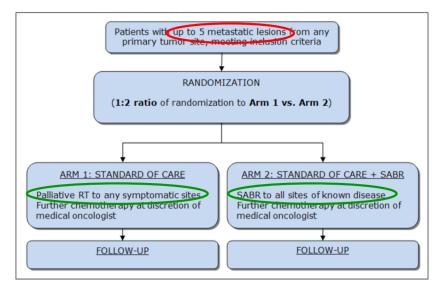
International Journal of Radiation Oncology biology • physics www.redjournal.org


Clinical Investigation


The Dutch—Belgian Registry of Stereotactic Body Radiation Therapy for Liver Metastases: Clinical Outcomes of 515 Patients and 668 Metastases

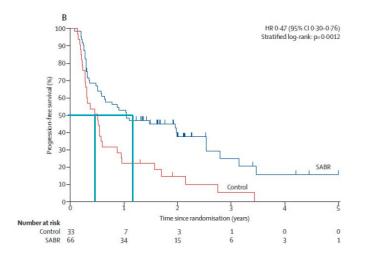
Alejandra Méndez Romero, MD, PhD, * Wilco Schillemans, MSc, * Rob van Os, MSc, 'Friederike Koppe, MD, PhD,' Cornelis J, Haasbeek, MD, PhD,' Ellen M. Hendriksen, MD, PhD,'' Karin Muller, MD, PhD,^{*} Heleen M. Ceha, MD, PhD,'' Pètra M. Braam, MD, PhD,^{**} Onne Reerink, MD, PhD,^{††} Marttijn P.M. Intven, MD, PhD,^{††} Ines Joye, MD, PhD,^{††} Edwin P.M. Jansen, MD, PhD,^{††} Merel S. Koedijk, MD,^{*} Ben J.M. Heijmen, PhD,^{*} and Jeroen Buijsen, MD, PhD,^{††}

- web-based registry, common protocol across 13 centers
- N= 515 pts, 668 liver mets
- 1y LC 87%
- 1y OS 84%
- G3 toxicity 3.9%



SABR-COMET

- Multi-institutional randomized open label phase II trial
- SABR vs SOC palliative therapy
- 2012-2016: 99 pts with OMD of multiple types
- Inclusion: controlled primary tumor, max 5 mets amenable to SABR,


max 3 mets in one organ

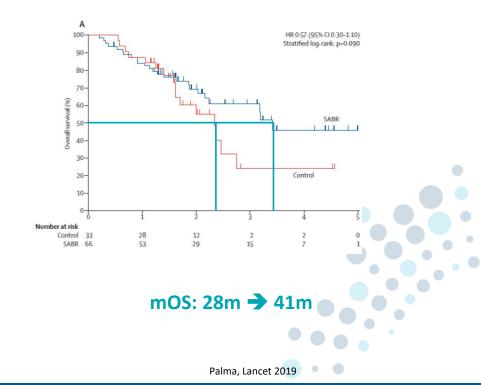

	Control group (n=33)	SABR group (n=66)
Age	69 (64-75)	67 (59-74)
Sex		
Men	19 (58%)	40 (61%)
Women	14 (42%)	26 (39%)
Site of original primary tu	mour	
Breast	5 (15%)	13 (20%)
Colorectal	9 (27%)	9 (14%)
Lung	6 (18%)	12 (18%)
Prostate	2 (6 %)	14 (21%)
Other	11 (33%)	18 (27%)
Time from diagnosis of primary tumour to randomisation (years)	2·3 (1·3-4·5)	2.4 (1.6-5.3)
Number of metastases		
1	12 (36 %)	30 (46%)
2	13 (40%)	19 (29%)
3	6 (18%)	12 (18%)
4	2 (6%)	2 (3%)
5	0 (0%)	3 (5%)
Location of metastases		
Adrenal	2/64 (3%)	7/127 (6%)
Bone	20/64 (31%)	45/127 (35%)
Liver	3/64 (5%)	16/127 (13%)
Lung	34/64 (53%)	55/127 (43%)
Other*	5/64 (8%)	4/127 (3%)
adiotherapy. *Other compris	edian (IQR). SABR=stereota ses brain (n=3 lesions in con n=1 lesion in control group; lesion in control group)	trol group; n=1 lesion i

Table 1: Baseline characteristics

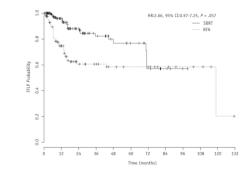
SABR-COMET

mPFS: 6m 🗲 12m

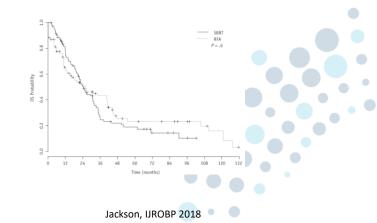
SBRT vs. RFA

CrossMark

Clinical Investigation


Comparison of Stereotactic Body Radiation Therapy and Radiofrequency Ablation in the Treatment of Intrahepatic Metastases

William C. Jackson, MD,* Yebin Tao, PhD,* Mishal Mendiratta-Lala, MD, Latifa Bazzi, BA,* Dan R. Wahl, MD, PhD,* Matthew J. Schipper, PhD,* Mary Feng, MD,⁺ Kyle C. Cuneo, MD,* Theodore S. Lawrence, MD, PhD,* and Dawn Owen, MD, PhD*


Departments of *Radiation Oncology, and ¹Radiology, University of Michigan, Ann Arbor, Michigan; and ¹Department of Radiation Oncology, University of California, San Francisco, San Francisco, California

> Non-randomized 161 pts with 282 **unresectable LM** 112 RFA; 170 SBRT

mFUP: 24,6m 2y FFLP 88% vs. 74% (p=0.06) Tumors >2cm: improved FFLP (p<0.01) 2y OS 51% (ns=0.8) G3 toxicity equal FFLP

HCC

- Most patients are no surgical candidates
 - → regional arterial therapies
 - ➔ local ablation:

RFA MWA

cryoablation

percutaneous ethanol injection (SB)RT

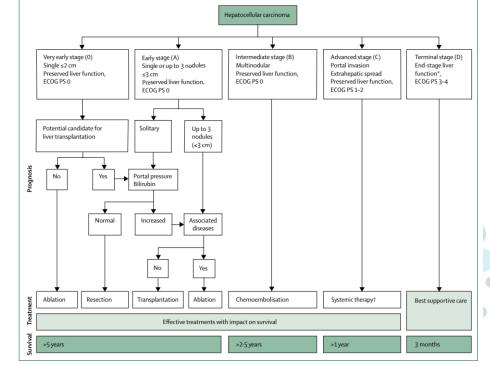


Figure 2: Barcelona Clinic Liver Cancer (BCLC) staging and treatment strategy

SBRT for HCC

No level I evidence!

Heterogeneity!

Selection bias

1y LC 65-100%; 1y OS 36-95%

Author	Yr	Туре	n	Size	VI	PVT	mf	PT	CP class	f/u	Dose	1y-LC	1y-OS
Méndez Romero et al ^[25]	2006	phase I/II	8 (11)	3.5 (0.5-7) cm	38%	25%	25%	NR	A: 63%, B: 25%, UK: 12%	13	25-37.5/3- 5Fx	75%	75%
Tse <i>et al</i> ^[26]	2008	phase I	31 (NB)	173 (9-1913) mL	52%	NR	NR	61%	A: 100%	18 ¹	24-54/6Fx	65% ¹	48%
Cárdenes et al ^[27]	2010	phase I	17 (25)	34 (8-95) mL	NR	18%	30%	24%	A: 35%, B: 65%	24	36-48/3-5Fx	100%	75%
Kang et al ^[28]	2012	phase II	47 (56)	15 (2-214) mL	NR	29%	17%	100% ²	A: 87%, B: 13%	17	42-60/3Fx	95% ⁴	69% ⁴
Price et al ^[29]	2012	phase I/II	26 (29)	NR (21-253) mL	NR	12%	12%	27%	A: 54%, B: 46%	13	36-48/3-5Fx	96%	77%
Huang et al ^[30]	2012	phase II	36 (NB)	4.8 (1.1-12.3) cm	NR	NR	NR	NR	A: 78%, B: 19%, C: 3%	14	25-48/4-5Fx	88%	64% ⁴
Bujold et al ^[31]	2013	phase I/II	102 (NB)	117 (1-1913) mL	55%	NR	61%	52%	A: 100%	31	24-54/6Fx	87%	55%
Culleton et al ^[32]	2014	phase II	29 (NB)	9 (4-27) cm	NR	76%	NR	14%	B: 97%, C: 3%	NR	21-49/5- 15Fx	NR	32%
Sanuki <i>et al</i> ^[33]	2014	retro	185 (185)	8 (1.6-65) mL	NR	NR	0%	68% ²	A: 85%, B: 15%	23	35-40/5Fx	99%	95%
Lasley et al ^[14]	2015	phase I/II	59 (65)	34 (2-107) mL	NR	NR	NR	NR	A: 64%, B: 36%	33/46 ³	36-48/3-5Fx	NR	91%/ 82% ³
Scorsetti et al ^[34]	2015	phase II	43 (63)	5 (1-13) cm	NR	20%	43%	65%	A: 53%, B: 47%	8	36-75/3-6Fx	86%	78%
Su et al ^[35]	2016	retro	132 (175)	3 (1.1-5) cm	NR	NR	28%	30%	A: 86%, B: 14%	21	42-46/3-Fx	91%	94%
Takeda et al ^[36]	2016	phase II	90 (90)	NR (1-4) cm	NR	NR	0%	64%	A: 91%, B: 9%	42	35-40/5Fx	96% ⁵	67% ⁵
Moon et al ^[37]	2018	phase II	11 (NB)	23 (3-145) mL ¹	NR	NR	13% ¹	48% ¹	NR	13 ¹	27.5-45/3- 5Fx	82%	36%
Nabavizadeh et al ^[38]	2018	retro	146 (146)	NR	NR	10%	0%	92%	A: 46%,B: 41%,C: 13%	23	50/5Fx ⁶	97%	NR
Jeong et al ^[39]	2018	retro	119 (139)	1.7 (NR) cm	0%	0%	NR	97%	A: 91%, B: 9%	26	30-60/3Fx	99%	99%

SBRT vs. other therapies

Retrospective data

Author	Yr	Туре	Treat.	n	Size	mf	PT	CP class	f/u	Dose	1y-LC	1y-0S	tox.	Comme nt
Su et al ^[40]	2017	pm	SBRT	33 (45)	3.3 (NR) cm	36%	0%	A: 100%	42	42- 48/3Fx	84% ¹	100%	nausea4	LC/OS NS
			OP	33 (45)	3.3 (NR) cm	30%	0%	A: 100%	44		72% ¹	97%	bleed./ pain ⁵	
Wahl et al ^[19]	2016	retro	SBRT	63 (83)	2.2 (0.1- 10) cm	29%	2 (0-7) ²	A: 69%, B: 29%, C: 2%	13	30-50/3- 5Fx	97%	74%	grade3+: 3%	LC/OS NS
			RFA	161 (249)	1.8 (0.6- 7) cm	32%	0 (0-7) ²	A: 50%, B: 42%, C: 8%	20		84%	70%	grade3+: 11%	> 2 cm LC sig↑ with SBRT
Sapir et al ^[20]	2018	retro	SBRT	125 (173)	2.3 (0.1- 20.8) cm	NR	2 (NR) ²	6 (5-9) ³	12	30-50/3- 5Fx	97%	75%	grade3+: 8%	LC sig↑ with SBRT
			TACE	84 (84)	2.9 (0.7- 15) cm	NR	0 (NR) ²	6 (5-9) ³	23		47%	74%	grade3+: 13%	Tox sig↑ with TACE

Gerum, WJGO 2019

SBRT with RFA, MWA, TACE?

Feasible and potentially synergistic

- Lesion selection (RFA, MWA prior to SBRT)
- Combination with TACE seems promising
 - Smaller lesions
 - Radiosensitizing CT (! Hypoxia)

SBRT as bridge to transplantation

- Retrospective small series
- Heterogeneous patient selection, RT doses
- pCR described
- Low toxicity

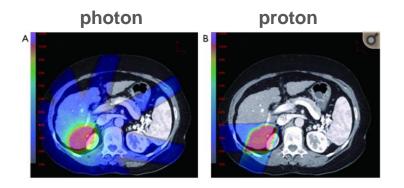
Study	No. patients, No. lesions	RT dose	Median tumor size	pCR rate	cCR rate	Dropout rate	Toxicity
Facciuto et al ⁸	17, 22	24-36 Gy in 2-4 fx	2.01 cm	14%	30%	NR	2 patients with post-SBRT nausea, 1 patient with acute liver decompensation
O'Connor et al ⁹	10, 11	33-54 Gy in 3 fx	3.4 cm	27%	NR	0%	40% with acute grade 1-2 toxicity, no ≥grade 3 toxicity
Gresswell et al ¹⁰	12, 17	30-50 Gy in 4-6 fx	2.3 cm	46%	80%	8%	No \geq grade 3 acute toxicity
Moore et al ¹¹	23, NR	30-54 Gx in 3-5 fx	2.5 cm	27.3 %	NR	30%	1 patient (CP B8) developed RILD
Uemura et al ¹²	22, 25	40-50 Gy in 4-6 fx	3.2 cm	28%	NR	9%	No \geq grade 3 toxicity
Jacob et al ¹³	12, 18	27-45 Gy in 2-6 fx	4.2 cm	100%	NR	42%	No \geq grade 3 toxicity
Garg et al (current study)	20, 26	30-63 Gy in 3-6 fx	3.05 cm	62%	76%	22%	No \geq grade 3 toxicity

Table 4 Summary of single institution retrospective series evaluating SBRT as a bridge to transplant for HCC

Abbreviations: cCR = clinical complete response; CP = Child-Pugh; HCC = hepatocellular carcinoma; NR = not reported; pCR = pathologic complete response; RILD = radiation-induced liver disease; RT = radiation therapy; SBRT = stereotactic body radiation therapy.

SBRT for liver lesions

- Pts who are not eligible for resection or other local therapies
 - Invasiveness
 - Lesions close to liver surface, major vessels, bile ducts, luminal organs
 - Portal thrombosis
 - Larger lesions (>2-3cm)
- In case of HCC as a bridge to transplantation
- Combination with other LDTs is feasible!


Individual estimation of liver function

- Liver volume
- Lesion size and number
- Prior treatments
- Current liver function

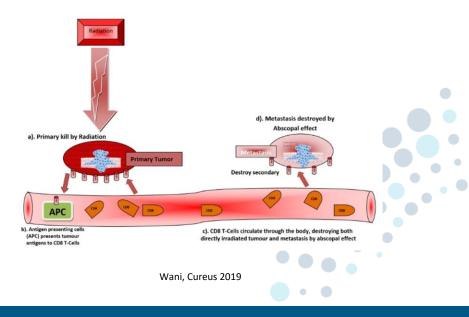
Proton SBRT

- Maybe beneficial because lack of exit dose, sparing more liver tissue
- Interesting for HCC, but also for large LM or after surgery

Kang et al. J Gastrointest Oncol 2019

Hong et al. JCO 2016

- Uncertainties regarding dose delivery (different interfaces), target motion
- Early reports show high local control and low toxicity
- Phase I-III studies ongoing (NCT03186898)


SBRT and immunotherapy

• Evolving field in case of **HCC** (inflammation-induced tumor)

Either monotherapy or in combination with SBRT (combination of atezo/beva + SBRT seems safe)

- Liver metastases:
 - Lung cancer
 - Colon cancer

Triggering systemic cancer immune responses Abscopal effect: T-lymphocyte mediated Under investigation in clinical trials

Conclusion

- Resection of LM in selected patients can lead to 5y OS of 50%, but only 10-15% of patients are resectable
- RFA, MWA and SBRT are valuable options in unresectable LM or HCC
- SBRT might be a better option than RFA for lesions >2cm or nearby large vessels
- SBRT patients are usually heavily pretreated, biasing reported results.
- In view of OMD, localized therapies, including SBRT, will gain importance as they could improve OS, LC and QoL
 - SABR-COMET: mOS 41 vs. 28m (SBRT vs. SOC)
 - Randomized phase II/III trials ongoing
 - NCT03862911 (SABR-COMET-3); N=297; cf 2027
 - NCT03721341 (SABR-COMET-10); N=159; cf 2029
 - NCT02364557 (M+ breast cancer); N=402; cf 2027
 - NCT03137771 (M+ NSCLC); N=300; cf 2022
- Biomarkers are needed for patient selection
- Newer insights into tumor biology will potentially change the landscape of SBRT liver with dose adaptation and addition of immunotherapy