SARS-CoV-2 Serology Testing in the Setting of Vaccination siemens-healthineers.com ## **Siemens Healthineers Position** Serology testing for SARS-CoV-2 will be beneficial and potentially even necessary in assessment of vaccine effectiveness, which will play a key role in promoting public health. Siemens Healthineers supports measuring SARS-CoV-2 IgG antibodies in relation to vaccine use for (1) establishing a threshold for protection or immunity, (2) confirming an initial neutralizing antibody response approximately 4 weeks post -vaccination, especially in those at risk for an insufficient immune response, and (3) tracking of antibody levels at approximately 6 months and periodically thereafter following vaccination to guide booster/revaccination efforts. An automated and scalable serology assay used for patient care in the context of vaccination should include key technical features for effective use: measurement of spike receptor-binding domain (S1-RBD)-neutralizing IgG antibodies, very high (≥99.5%) specificity, and quantitative results. # **Background** In clinical practice, quantitative antibody testing for assessing the need to vaccinate/boost is common, especially in cases such as hepatitis B vaccination, where the neutralizing surface antigen-antibody threshold associated with immunity is known.1 In population-based studies, SARS-CoV-2 antibody testing has been shown to identify a significant percentage of the population with an immune response to the virus but undiagnosed for COVID-19.2-6 Commercially available clinical laboratory serology testing suitable for clinical practice is not expensive and can often be high-throughput, with fast turnaround and broad population access. Currently assays with very high (≥99.5%) specificity, particularly important under conditions of low disease prevalence, will be essential to vaccination campaigns, both to identify vulnerable populations as well as assess for a successful response in large populations.^{7,8} As learned during this pandemic for other types of SARS-CoV-2 testing, such as PCR, availability at a large and accessible scale is key to ensuring that the needs of the population can be met. While proof of antibody-associated immunity in SARS-CoV-2 is emerging from the vaccine trials and other datasets, extensive data to date already support a role for neutralizing antibody in protecting from (or mitigating) infection.⁹⁻¹⁷ Studies from natural infections indicate significant diversity in the levels and duration of neutralizing antibody responses, with declining levels over time leading to vulnerability to reinfection. ^{15,18-26} Long COVID (or Post COVID) syndrome has been increasingly recognized, with about one-third of patients who were initially asymptomatic reported having COVID-19 symptoms weeks after diagnosis. ²⁷ Consequently, serology testing is essential to identify those that may have previously been infected and to distinguish successful from suboptimal vaccine responses and detect antibody declines after natural infection. ²⁸⁻³⁰ The factors influencing likelihood of a robust neutralizing antibody response are poorly defined but have been linked to immunocompetency, age, and disease severity. ³⁰⁻³² Existing data indicates that detectable levels of circulating neutralizing antibody are necessary for protection, though the role of memory B-cells and/or T-cells is still under investigation. Data from vaccine Phase II/III trials indicate that the mRNA vaccines are up to 95% effective in preventing COVID-19, and the risk of severe illness has been reported to be lowered by more than 90% in the mRNA vaccine clinical trials.^{33,34} Certain patient populations were excluded from these vaccine trials, and hence the efficacy and safety of a SARS-CoV-2 vaccine has not been established across all patient populations. To circumvent vaccine shortages, certain countries have chosen to extend the vaccine dosing interval, including the UK,³⁵ Denmark, Norway, France, and Canada.³⁶ The data regarding the safety and efficacy of the vaccines with alternative dosing schedules is currently lacking.³⁷ #### **Considerations** #### Antibody-mediated immunity Immune responses to pathogens are diverse and involve both adaptive and innate elements.³⁸⁻³⁹ Adaptive immunity is pathogen-specific and principally mediated by B- and T-cells. Humoral immunity is driven by B-cells that produce antibody (often "helped" by T-cells that secrete specific cytokines). With many pathogens, antibodies are the principal effector of protection, particularly if they can block (neutralize) viral entry. 40 Because antibody-mediated viral neutralization is a correlate for immunity, confirmed protection in vivo associated with specific antibodies/levels must be established. A growing body of data supports the potential for neutralizing antibody to confer protection from SARS-CoV-2.9-17,41-43 This includes both in vitro demonstrations of antibody neutralization and in vivo evidence in a range of experimental animal models challenged with live virus. Early longitudinal studies on the duration of neutralizing antibodies following SARS-CoV-2 infection, were somewhat hampered by the short length of those studies. Several studies undertaken over longer time periods are now available, providing key insights into the long-term dynamics of antibody responses. One such study found anti-spike and anti-RBD IgG and neutralizing activity to persist in the majority of patients (90% and 60%, respectively) 9-11 months after symptom onset,44 while others showed detectable neutralizing antibody responses lasting 8-12 months in patients with severe disease.45-47 Data from a national laboratory and clinical trials supports a sustained positivity rate of antibodies against the SARS-CoV-2 spike protein past ten months post-PCR confirmed COVID-19 infection. 48-52 Antibody seropositivity persistence has been shown to last for up to two years in other coronaviruses, so epidemiological evidence of antibody duration provide longitudinal data to properly view population-level seropositivity rates, which can help shape public policy moving forward.53 As vaccine-induced production of neutralizing antibodies proves effective, assessment of neutralizing antibody levels to identify/confirm a protective threshold will be vital in establishing broad population-based immunity. Modeling studies predicted a significant loss in protection from SARS-CoV-2 infection following the decay of the neutralization titer over the first 250 days post immunization.⁵⁴ Recently, evidence regarding efficacy of vaccines have been available from longitudinal trials indicating a gradual decline in vaccine efficacy through 6 months post vaccination.55 Evidence have emerged describing antibody decay kinetics in vaccinated individuals and previously infected individuals. The vaccinated group had higher initial antibody titers but had faster decay of these levels over time compared to previously infected individuals.⁵⁶ Waning humoral immune response in vaccinated individuals was also reported 6 months following a second vaccination dose in men, immune suppressed individuals, and individuals age 65 and older.⁵⁷ *For a 2-dose regimen, the proposed timing is after the second dose. Figure 1. Key timepoints for serology testing to assess initial antibody immune response and duration post-vaccination. #### Antibody targets and neutralization Current commercially available SARS-CoV-2 antibody assays have diverse targets, including nucleocapsid (N) protein, whole spike (both S1 and S2 regions), S1, and S1-RBD.⁵⁸⁻⁸⁰ Robust evidence in vitro and from animal model studies supports a mechanism of viral neutralization by antibodies to the spike glycoprotein, primarily through inhibition of recognition/attachment to the ACE2 host cell receptor. While several epitopespecific neutralizing spike antibodies have been identified (in both S1 and S2), most target the S1-RBD, as these antibodies can interfere with recognition and binding to ACE2. 12-15,81 Since both whole spike and S1-targeted assays include the RBD region, they can indicate, but not specifically identify, the presence of RBD-associated neutralizing antibodies. S1-RBD-specific assays are likely to prove advantageous over S1 and whole spike, especially if using a quantitative assay, as neutralizing versus binding antibodies might be expected to be enriched and therefore a better correlate to immunity. Data from a randomized efficacy trial of ChAdOx1 nCoV-19 (AZD1222) vaccine in the UK was analyzed to determine the antibody levels associated with protection against SARS-CoV-2, indicating that correlates of protection can be used to bridge to new populations using validated assays. The data can be used to extrapolate efficacy estimates for new vaccines where large efficacy trials cannot be conducted.82 Another study examined the effectiveness and the immunogenicity of the heterologous ChAdOx1 nCoV-19/BNT162b2 combination by conducting a longitudinal survey of the anti-spike immunity conferred by each vaccine combination.83 While not all antibodies to the RBD are equally neutralizing, the RBD is identified as the immunodominant source. Depletion analysis indicates an estimated ~90% of known neutralizing antibodies target epitopes within the RBD. 12,15,41 Recent data comparing S1-RBD antibody levels with virus neutralization titers showed a good correlation (r=0.843; p<0.0001) and an overall qualitative agreement of 98.5%.84 The emergence of SARS-CoV-2 variants has led to altered sensitivity to antibody-mediated immunity through a reduction in antibody neutralization by sera from individuals with a vaccine designed against the wild type virus.85,86 Data are needed to characterize antibody thresholds that define susceptibility to these breakthrough infections. While current data on S1-RBD vaccines may preclude the need for changes to vaccine design, the emergence of SARS-CoV-2 variants may require second generation vaccines designed with a broader set of antigenic targets to address variants.87,88 With the widespread availability of vaccination, differential reactivity of spike and nucleocapsid specific antibodies might be used to help differentiate previous infection from vaccination in serologic studies, particularly for vaccines that produce antibodies only against the spike protein. So Gurrent vaccines induce antibodies to the S protein. Thus, the presence of anti-N antibodies indicates previous infection regardless of a person's vaccination status, while presence of anti-S antibodies indicates either previous infection or vaccination. The presence of antibodies to the spike protein and absence of nucleocapsid antibodies in the same specimen indicates vaccination in a person never infected or could signal prior infection in a person whose nucleocapsid antibodies have waned. Studies on duration of antibody response have indicated a longer lasting detection of antibodies against the spike protein compared to nucleocapsid antibodies. 24,92,93 #### Qualitative versus quantitative reporting Qualitative SARS-CoV-2 antibody assays have a defined cut-point based on presence/absence of immune response rather than a threshold value based on antibody level and neutralization of the virus. Therefore, they only provide a "yes" or "no" indication of a response to infection. Quantitative assays of neutralizing antibody support identification of an immune threshold, above which individuals are likely to be protected and below which they are susceptible. A number of IgG and total antibody quantitative assays for the spike protein (including the S1-RBD) are already commercially available. 94-97 Antibodies to SARS-CoV-2 can decline quickly and at different rates for different epitopes, 19,21-25 so quantitation would prove salient for rapid assessment of immunity or need to boost. Quantitative testing would be a valuable tool for establishing a protective threshold, as well as initial assessment of vaccination response and monitoring of antibody levels over time when a threshold is established. Ongoing efforts to better understand antibody kinetics, longevity of humoral immune responses, correlation of binding antibody levels to neutralizing antibodies, and serological surrogates of immune protection are dependent on wider availability of quantitative binding antibody assays that are standardized and traceable to an international standard.98 Standardization of assays is required to allow comparison of results across the different assays and can be accomplished with reference materials that are well characterized by anchoring it to a neutralization endpoint. The European Commission's Joint Research Centre (JRC) and World Health Organization (WHO) have developed reference material for standardization. 99,100 The First WHO International Standard (WHO 20/136) is intended to be used for calibration and harmonization of serology assays and consists of pooled convalescent plasma from recovered SARS-CoV-2 positive individuals. While its intention is for calibration, it is not suitable for harmonization or standardization, since it only contains a single value, and is not associated with neutralizing antibodies. # Serology testing for determination of immune response to vaccines Vaccination-related testing for neutralizing antibody can be utilized at multiple time-points. Ongoing clinical trials for authorized vaccines, and vaccines in development, are utilizing serology testing for neutralizing antibody titer as a surrogate of efficacy. 11,16,30,58,60,62,64,65,67-70,72,74-79,101 These trials are assessing neutralizing antibody immunogenicity in response to vaccine administration over time, which will be necessary to inform antibodymediated protection. Immunobridging studies have been utilized as well to infer effectiveness of vaccines in the pediatric population. Immunogenicity assessments of the BNT162b2 COVID-19 vaccine in adolescents were performed before vaccination and 1 month after the second dose with neutralization assays and RBD-binding or S1-binding immunoassays. 102 A modeling study assessing vaccine prioritization strategies demonstrated there may be value in pairing serology testing with vaccination in areas with higher SARS-CoV-2 seroprevalence for additional reductions in cumulative incidence and mortality.⁵⁹ As current vaccines require a 2-dose regimen to broadly stimulate levels of neutralizing antibody, serology testing would measure for an effective response, approximately 4 weeks post vaccination. 63,101 Initially while facing limited vaccine supplies, some countries have opted for an extended vaccine dosing interval (11-12 weeks) to get as many people as possible partially vaccinated. Serology testing helps evaluate how such a delay affects SARS-CoV-2 antibody levels and could inform vaccine scheduling decisions in other countries. In a cohort study in the UK, adults aged >80 years with 11-12 week intervals between doses of the Pfizer-BioNTech vaccine had 3.5-fold higher peak titers of anti-SARS-CoV-2 spike antibodies compared to adults >80 years of age given a standard three-week interval between doses. 103 Studies have suggested that people who previously had COVID-19 may get a strong immune response from only one dose of these vaccines. 43,104,105 Serology testing can identify previously infected individuals and evaluate antibody response following a one or two dose regimen. France has formalized a vaccine policy for people who have had and recovered from SARS-CoV-2 infection and announced that vaccine centers will be equipped with antibody tests to test everyone before they are vaccinated. 106 Quantitative periodic antibody testing one month postvaccination, and after approximately 6 months and periodically thereafter, would assure a sustained antibody response at sufficient levels for virus neutralization and guide booster shot prioritization (Figure 1). The timing of appropriate serology testing would be optimized and refined as needed and may differ between individuals based on the strength of their initial response to vaccination. Vaccine manufacturers have indicated a likely need for booster doses to combat variants and prolong protection against wild-type SARS-CoV-2.^{107,108} Periodic antibody testing can identify at risk populations that would benefit from getting a booster dose and inform decision-making to guide prioritization strategies for booster dose administration in various populations. A serology-defined threshold (from either natural infection or vaccination) remains a key need and this periodic testing would offer additional data on antibody response patterns to determine optimal serology testing utilization. Longer time-frame periodic quantitative testing for waning levels of protective antibody would inform the need to revaccinate/boost if SARS-CoV-2 becomes a seasonal disease. #### Vaccines and efficacy in clinical trials In phase 3 vaccine trials, protection from disease, i.e., immunity, has been demonstrated relative to the placebo group despite a finite incidence of infection in the vaccinated subjects. A vaccine could achieve statistical significance for the primary endpoint for protection from disease despite significant incidence of disease in the vaccinated group (example FDA accepted primary endpoint >50%). 109 Even with high efficacy, a proportion of those inoculated would not have protection from disease. Assessment for seroconversion failure or declining levels in the vaccinated but susceptible population is a critical parameter with implications for patient care, population management, and public policy.^{2,110} Data from initial vaccine trials is limited to certain populations and exposure patterns. Additional data on antibody response and duration will be needed to help inform vaccine efficacy in larger, more-diverse populations to determine appropriate use in the context of variables such as vaccine design/manufacturer, ethnicity, level of viral load exposure, chronic diseases, and individual immune system strength.¹¹¹ All vaccines in use or development published on to date include or are based solely on the spike protein, with spike- or RBD-specific antibodies serving as a surrogate of efficacy along with elements of the cellular response. In this scenario, natural infection can be monitored by testing for antibody to the N protein. However, testing for quantitative S1-RBD antibodies would be the preferred method to assess levels relative to susceptibility following vaccination due to their correlation to neutralization and protection. Additional data on vaccine use and antibody response in already-seropositive patients is needed to determine response patterns in a more-diverse antibody population. Following the identification of multiple SARS-COV2 variant strains, additional data on the ability of antibodies developed from vaccines to infer protection against these strains would be necessary.85,86,88 #### Vaccine response in at-risk populations Initially, additional data on duration of antibodymediated protection is needed across populations, and in the long-term testing may be focused on populations with known risk of insufficient immune response such as the elderly. 112,113 The timing of appropriate serology testing would be optimized and refined based on the accumulation of evidence. In 2013, researchers from the CDC estimated that the prevalence of immunosuppression among adults in the United States was 2.7%. 114 This patient population has been excluded from the vaccine trials. Data for other vaccines, such as regular-dose influenza vaccine, show a reduced response in solid organ transplant recipients when compared with the general population. 115,116 Studies assessing the immune response of SARS-CoV-2 vaccinated individuals have relied on the measurement of the level of antibody response (or lack thereof) in immunocompromised individuals in comparison to healthy individuals as a measure of vaccine efficacy. 117,118 Studies in various patient populations such as solid organ transplant recipients, 119-123 dialysis, 121,124-127 hematologic malignancies, 117,128,129 multiple myeloma, 130,131 inflammatory bowel disease receiving biologic therapies, 132,133 and treatments with immunosuppressive medications, 134 have shown a varied antibody response following vaccination. Studies on duration of antibody response in these populations have been lacking. During phase I/II Pfizer-BioNTech and Moderna vaccine trials, 100% seroconversion was observed, and 90% seroconversion with the Janssen vaccine in the general population. 16,67,135 Decreased rates of vaccine-induced seroconversion have been reported among persons with a variety of immune suppressing conditions. A study of mRNA vaccination in hematologic malignancy patients showed that 46% did not seroconvert, 117 and another in chronic lymphoblastic leukemia patients showed that 60% did not seroconvert. 128 In kidney transplant recipients only 36.4% tested positive for anti-S antibodies after receiving the BNT162b2 vaccine. 123 In a study of solid organ transplant recipients, a third of patients that did not seroconvert after 2 mRNA vaccine doses were still seronegative following a third dose. 136 Quantitative serology testing would allow physicians to assess the presence, levels, and duration of antibody response following SARS-CoV-2 vaccination, and help guide the need for additional or higher doses as with other vaccines in solid organ transplant recipients. 116 With the rollout of vaccinations to pediatric population, serology testing to assess immune response in more common immunocompromised populations, such as acute lymphoblastic leukemia and sickle cell disease, and populations on immunomodulating drugs will be needed.137 Recently anti-S IgG testing has been utilized to assess antibody presence in studies investigating the administration of monoclonal antibody therapy in hospitalized patients and has been shown to be helpful in assessing the potential utility of such therapies. Data from the RECOVERY trial has demonstrated that the investigational antibody combination reduces the risk of death when given to patients hospitalized with severe COVID-19 who have not mounted a natural antibody response of their own (seronegative). The UK and France have recently authorized the use of monoclonal antibody therapy in at-risk immunocompromised individuals who are not sufficiently protected by vaccination. 139 ## **Summary** To enable an effective vaccination strategy, Siemens Healthineers advocates the use of automated SARS-CoV-2 serology testing to help confirm efficacy. Serology assays should have the appropriate characteristics for assessment of vaccine response: - Quantitative results - S1-RBD-neutralizing IgG antibody detection - Very high (≥99.5%) specificity Serology testing can inform vaccination utilization by assessing status of protection at multiple junctures, especially in at-risk populations: - Post-vaccination initial response after approximately 4 weeks - Duration of vaccination response after approximately 6 months and periodically thereafter to guide decision making regarding the need for booster doses Additionally, quantitative neutralizing-antibody testing could support determination of an antibody threshold for immunity/susceptibility to SARS-CoV-2 and provide critical data needed to understand vaccine-facilitated antibody response and duration in populations not included in initial vaccine trials. Serology is a scientifically sound, cost-effective surrogate for vaccine efficacy and able to meet high-volume testing needs. With the emergence of different variant SARS-CoV-2 strains, ensuring the effectiveness of vaccines will play a key role in promoting public health, including assessing sufficient and durable protection. # References - Walayat, S., et al., Recent advances in vaccination of non-responders to standard dose hepatitis B virus vaccine. World J Hepatol, 2015. 7(24): p. 2503-9. - Alter, G. and R. Seder, The Power of Antibody-Based Surveillance. New England Journal of Medicine, 2020. 383(18): p. 1782-1784. - Dingens, A.S., et al., Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak. Nature Communications, 2020. 11(1): p. 4378. - Gudbjartsson, D.F., et al., Humoral Immune Response to SARS-CoV-2 in Iceland. New England Journal of Medicine, 2020. 383(18): p. 1724-1734. - Perico, L., et al., COVID-19 and lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine, 2020. 61. - Stadlbauer, D., et al., Repeated cross-sectional sero-monitoring of SARS-CoV-2 in New York City. Nature, 2021. 590(7844): p. 146-150. - CDC. [cited 2020 Nov. 6]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/ antibody-tests-guidelines.html - 8. IDSA. [cited 2020 Nov. 6]; Available from: https://www.idsociety.org/COVID19guidelines/serology - Addetia, A., et al., Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. J Clin Microbiol, 2020. 58(11). - Corbett, K.S., et al., Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020. 383(16): p. 1544-1555. - Mercado, N.B., et al., Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020. 586(7830): p. 583-588. - Piccoli, L., et al., Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020. 183(4): p. 1024-1042.e21. - Premkumar, L., et al., The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol, 2020. 5(48). - Rodda, L.B., et al., Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021. 184(1): p. 169-183.e17. - Wajnberg, A., et al., Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science, 2020. 370(6521): p. 1227-1230. - 16. Walsh, E.E., et al., Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 2020. 383(25): p. 2439-2450. - 17. Wang, H., et al., Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell, 2020. 182(3): p. 713-721.e9. - Fenwick, C., et al., Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies. J Virol, 2021. 95(3). - Grandjean, L., et al., Humoral Response Dynamics Following Infection with SARS-CoV-2. medRxiv, 2020: p. 2020.07.16.20155663. - Harvala, H., et al., Convalescent plasma treatment for SARS-CoV-2 infection: analysis of the first 436 donors in England, 22 April to 12 May 2020. Euro Surveill, 2020. 25(28). - 21. Ibarrondo, F.J., et al., Rapid Decay of Anti–SARS-CoV-2 Antibodies in Persons with Mild Covid-19. New England Journal of Medicine, 2020. 383(11): p. 1085-1087. - Long, Q.-X., et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 2020. 26(8): p. 1200-1204. - Muecksch, F., et al., Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients. J Infect Dis, 2021. 223(3): p. 389-398. - Ripperger, T.J., et al., Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity, 2020. 53(5): p. 925-933.e4. - Seow, J., et al., Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol, 2020. 5(12): p. 1598-1607. - Wang, Y., et al., Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest, 2020. 130(10): p. 5235-5244. - 27. Huang, Y., et al., COVID Symptoms, Symptom Clusters, and Predictors for Becoming a Long-Hauler: Looking for Clarity in the Haze of the Pandemic. medRxiv, 2021. - Erasmus, J.H., et al., An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med, 2020. 12(555). - 29. Jeyanathan, M., et al., Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol, 2020. 20(10): p. 615-632. - 30. Poland, G.A., I.G. Ovsyannikova, and R.B. Kennedy, SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. The Lancet, 2020. 396(10262): p. 1595-1606. - 31. Chen, Y., et al., Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev, 2021. 65: p. 101205. - 32. Poonia, B. and S. Kottilil, Immune Correlates of COVID-19 Control. Front Immunol, 2020. 11: p. 569611. - Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2020. 384(5): p. 403-416. - Polack, F.P., et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 2020. 383(27): p. 2603-2615. - NHS. Letter to chief executives of all NHS trusts and foundation trusts. [cited 2021 June 2]; Available from: https://www.england. nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/12/C0994-System-letter-COVID-19-vaccination-deployment-planning-30-December-2020.pdf - 36. Straightstimes. [cited 2021 June 2]; Available from: https://www.straitstimes.com/world/several-countries-delaying-second-covid-19-vaccine-dose - 37. lacobucci, G. and E. Mahase, Covid-19 vaccination: What's the evidence for extending the dosing interval? Bmj, 2021. 372: p. n18. - 38. Chaplin, D.D., Overview of the immune response. J Allergy Clin Immunol, 2010. 125(2 Suppl 2): p. S3-23. - Marshall, J.S., et al., An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology, 2018. 14(2): p. 49. - VanBlargan, L.A., L. Goo, and T.C. Pierson, Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev, 2016. 80(4): p. 989-1010. - Chen, X., et al. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal transduction and targeted therapy, 2020. 5, 180 DOI: 10.1038/s41392-020-00301-9. - 42. Hassan, A.O., et al., A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020. 182(3): p. 744-753.e4. - 43. Krammer, F., et al., Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine. N Engl J Med, 2021. 384(14): p. 1372-1374. - 44. Dispinseri, S., et al., Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat Commun, 2021. 12(1): p. 2670. - 45. Lau, E.H.Y., et al., Neutralizing antibody titres in SARS-CoV-2 infections. Nature Communications, 2021. 12(1): p. 63. - 46. Sherina, N., et al., Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med (N Y), 2021. 2(3): p. 281-295.e4. - 47. Yao, L., et al., Persistence of Antibody and Cellular Immune Responses in Coronavirus Disease 2019 Patients Over Nine Months After Infection. J Infect Dis, 2021. 224(4): p. 586-594. - Alfego, D., et al., A population-based analysis of the longevity of SARS-CoV-2 antibody seropositivity in the United States. EClinicalMedicine, 2021. 36. - 49. den Hartog, G., et al., Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study. Clin Infect Dis, 2021. - 50. Glück, V., et al., SARS-CoV-2-directed antibodies persist for more than six months in a cohort with mild to moderate COVID-19. Infection, 2021. 49(4): p. 739-746. - 51. He, Z., et al., Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet, 2021. 397(10279): p. 1075-1084. - 52. L'Huillier, A.G., et al., Antibody persistence in the first 6 months following SARS-CoV-2 infection among hospital workers: a prospective longitudinal study. Clin Microbiol Infect, 2021. 27(5): p. 784.e1-8. - 53. Huang, A.T., et al., A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nature Communications, 2020. 11(1): p. 4704. - 54. Khoury, D.S., et al., Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nature Medicine, 2021. 27(7): p. 1205-1211. - 55. Thomas, S.J., et al., Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. New England Journal of Medicine, 2021. 385(19): p. 1761-1773. - Israel, A., et al., Large-scale study of antibody titer decay following BNT162b2 mRNA vaccine or SARS-CoV-2 infection. medRxiv, 2021. - 57. Levin, E.G., et al., Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. New England Journal of Medicine, 2021. - 58. Bos, R., et al., Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. npj Vaccines, 2020. 5(1): p. 91. - 59. Bubar, K.M., et al., Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 2021. 371(6532): p. 916-921. - Dagotto, G., J. Yu, and D.H. Barouch, Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host Microbe, 2020. 28(3): p. 364-370. - 61. Figueiredo-Campos, P., et al., Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur J Immunol, 2020. 50(12): p. 2025-2040. - 62. Folegatti, P.M., et al., Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 2020. 396(10249): p. 467-478. - 63. Gaebler, C. and M.C. Nussenzweig, All eyes on a hurdle race for a SARS-CoV-2 vaccine. Nature, 2020. 586(7830): p. 501-502. - 64. Gao, Q., et al., Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020. 369(6499): p. 77-81. - 65. Hotez, P.J., et al., COVID-19 vaccines: neutralizing antibodies and the alum advantage. Nature Reviews Immunology, 2020. 20(7): p. 399-400. - Houlihan, C.F. and R. Beale, The complexities of SARS-CoV-2 serology. Lancet Infect Dis, 2020. 20(12): p. 1350-1351. - Jackson, L.A., et al., An mRNA Vaccine against SARS-CoV-2 Preliminary Report. New England Journal of Medicine, 2020. 383(20): p. 1920-1931. - 68. Keech, C., et al., Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. New England Journal of Medicine, 2020. 383(24): p. 2320-2332. - 69. Logunov, D.Y., et al., Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. The Lancet, 2020. 396(10255): p. 887-897. - Mulligan, M.J., et al., Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020. 586(7830): p. 589-593. - 71. Rosadas, C., et al., Testing for responses to the wrong SARS-CoV-2 antigen? Lancet, 2020. 396(10252): p. e23. - 72. Sahin, U., et al., COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature, 2020. 586(7830): p. 594-599. - Trabaud, M.A., et al., Comparison of eight commercial, highthroughput, automated or ELISA assays detecting SARS-CoV-2 IgG or total antibody. J Clin Virol, 2020. 132: p. 104613. - 74. van Doremalen, N., et al., ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020. 586(7830): p. 578-582. - 75. Xia, S., et al., Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. Jama, 2020. 324(10): p. 951-960. - 76. Yu, J., et al., DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020. 369(6505): p. 806-811. - 77. Zhang, Y., et al., Immunogenicity and Safety of a SARS-CoV-2 Inactivated Vaccine in Healthy Adults Aged 18-59 years: Report of the Randomized, Double-blind, and Placebo-controlled Phase 2 Clinical Trial. medRxiv, 2020: p. 2020.07.31.20161216. # **References (continued)** - 78. Zhu, F.-C., et al., Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 2020. 396(10249): p. 479-488. - 79. Zhu, F.-C., et al., Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet, 2020. 395(10240): p. 1845-1854. - Group, T.N.S.-C.-S.A.E., Performance characteristics of five immunoassays for SARS-CoV-2: a head-to-head benchmark comparison. Lancet Infect Dis, 2020. 20(12): p. 1390-1400. - 81. lyer, A.S., et al., Dynamics and significance of the antibody response to SARS-CoV-2 infection. medRxiv, 2020. - Feng, S., et al., Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. medRxiv, 2021: p. 2021.06.21.21258528. - 83. Pozzetto, B., et al., Immunogenicity and efficacy of heterologous ChadOx1/BNT162b2 vaccination. Nature, 2021. - 84. Irsara, C., et al., Clinical validation of the Siemens quantitative SARS-CoV-2 spike IgG assay (sCOVG) reveals improved sensitivity and a good correlation with virus neutralization titers. Clinical Chemistry and Laboratory Medicine (CCLM), 2021. 59(8): p. 1453-1462. - 85. Wang, P., et al., Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe, 2021. 29(5): p. 747-751.e4. - 86. Wibmer, C.K., et al., SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 2021. 27(4): p. 622-625. - 87. Mahase, E., Covid-19: Where are we on vaccines and variants? Bmj, 2021. 372: p. n597. - 88. Walensky, R.P., H.T. Walke, and A.S. Fauci, SARS-CoV-2 Variants of Concern in the United States-Challenges and Opportunities. Jama, 2021. 325(11): p. 1037-1038. - 89. Fotis, C., et al., Accurate SARS-CoV-2 seroprevalence surveys require robust multi-antigen assays. Sci Rep, 2021. 11(1): p. 6614. - 90. Hall, V.J., et al., SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet, 2021. 397(10283): p. 1459-1469. - 91. Harvey, R.A., et al., Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection. JAMA Intern Med, 2021. 181(5): p. 672-679. - 92. Van Elslande, J., et al., Estimated Half-Life of SARS-CoV-2 Anti-Spike Antibodies More Than Double the Half-Life of Antinucleocapsid Antibodies in Healthcare Workers. Clinical Infectious Diseases, 2021. - CDC. Interim Guidelines for COVID-19 Antibody Testing. Sept 21, 2021 [cited 2021 Nov. 4]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/ antibody-tests-guidelines.html - 94. SiemensHealthineers. Available from: https://www.siemens-healthineers.com/press-room/press-releases/ covid-19-antibody-igg.html - Roche. [cited 2020 Nov. 12]; Available from: https://www.roche.com/media/releases/med-cor-2020-09-18b.htm - MayoClinic. [cited 2020 Nov. 12]; Available from: https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-launches-neutralizing-antibody-test-to-advance-covid-19-therapies/ - 97. FDA. Available from: https://www.fda.gov/medical-devices/coronavirus-disease-2019covid-19-emergency-use-authorizations-medical-devices/ eua-authorized-serology-test-performance - 98. Gundlapalli, A.V., et al., SARS-CoV-2 Serologic Assay Needs for the Next Phase of the US COVID-19 Pandemic Response. Open Forum Infect Dis, 2021. 8(1): p. ofaa555. - European Commission, J.R.C., Directorate F Health, Consumers and Reference Materials. Reference Material Product Information Sheet. EURM-017. [cited 2021 Feb. 5]; Available from: https://crm.jrc.ec.europa.eu/p/EURM-017 - 100. WHO/BS.2020.2403. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 antibody. Available from: https://www.who.int/publications/m/item/ WHO-RS-2020.2403 - 101. Krammer, F., SARS-CoV-2 vaccines in development. Nature, 2020. 586(7830): p. 516-527. - 102. Frenck, R.W., et al., Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine, 2021. 385(3): p. 239-250. - Parry, H., et al., Extended interval BNT162b2 vaccination enhances peak antibody generation in older people. medRxiv, 2021: p. 2021.05.15.21257017. - 104. Ebinger, J.E., et al., Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med, 2021. 27(6): p. 981-984. - 105. Saadat, S., et al., Binding and Neutralization Antibody Titers After a Single Vaccine Dose in Health Care Workers Previously Infected With SARS-CoV-2. Jama, 2021. 325(14): p. 1467-1469. - 106. TheLocal. [cited 2021 June 9]; Available from: https://www.thelocal.fr/20210604/french-health-ministeranyone-who-has-had-covid-only-needs-one-vaccine-dose/ - 107. CNBC. [cited 2021 June 2]; Available from: https://www.cnbc.com/2021/04/15/pfizer-ceo-says-third-covid-vaccine-dose-likely-needed-within-12-months.html - 108. CBSNews. [cited 2021 June 2]; Available from: https://www.cbsnews.com/news/moderna-covid-vaccine-booster-shots/ - 109. FDA. Development and Licensure of Vaccines to Prevent COVID-19 Guidance for Industry. [cited 2020 Nov. 8]; Available from: https://www.fda.gov/media/139638/download - 110. Corbett, K.S., et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020. 586(7830): p. 567-571. - 111. Dagan, N., et al., BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. New England Journal of Medicine, 2021. 384(15): p. 1412-1423. - 112. Doria-Rose, N., et al., Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med, 2021. 384(23): p. 2259-2261. - 113. Hansen, C.H., et al., Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet, 2021. 397(10280): p. 1204-1212. - 114. Harpaz, R., R.M. Dahl, and K.L. Dooling, Prevalence of Immunosuppression Among US Adults, 2013. Jama, 2016. 316(23): p. 2547-2548. - 115. Chong, P.P., L. Handler, and D.J. Weber, A Systematic Review of Safety and Immunogenicity of Influenza Vaccination Strategies in Solid Organ Transplant Recipients. Clin Infect Dis, 2018. 66(11): p. 1802-1811. - 116. Natori, Y., et al., A Double-Blind, Randomized Trial of High-Dose vs Standard-Dose Influenza Vaccine in Adult Solid-Organ Transplant Recipients. Clin Infect Dis, 2018. 66(11): p. 1698-1704. - 117. Agha, M., et al., Suboptimal response to COVID-19 mRNA vaccines in hematologic malignancies patients. medRxiv, 2021: p. 2021.04.06.21254949. - 118. Massarweh, A., et al., Evaluation of Seropositivity Following BNT162b2 Messenger RNA Vaccination for SARS-CoV-2 in Patients Undergoing Treatment for Cancer. JAMA Oncology, 2021. 7(8): p. 1133-1140. - 119. Boyarsky, B.J., et al., Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. Jama, 2021. 325(17): p. 1784-1786. - 120. Chavarot, N., et al., Poor Anti-SARS-CoV-2 Humoral and T-cell Responses After 2 Injections of mRNA Vaccine in Kidney Transplant Recipients Treated With Belatacept. Transplantation, 2021. 105(9): p. e94-e95. - 121. Grupper, A., et al., Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am J Transplant, 2021. 21(8): p. 2719-2726. - 122. Peled, Y., et al., BNT162b2 vaccination in heart transplant recipients: Clinical experience and antibody response. J Heart Lung Transplant, 2021. 40(8): p. 759-762. - 123. Rozen-Zvi, B., et al., Antibody response to SARS-CoV-2 mRNA vaccine among kidney transplant recipients: a prospective cohort study. Clin Microbiol Infect, 2021. 27(8): p. 1173.e1-1173.e4. - 124. Agur, T., et al., Antibody response to mRNA SARS-CoV-2 vaccine among dialysis patients - a prospectivecohort study. Nephrol Dial Transplant, 2021. - 125. Anand, S., et al., Antibody Response to COVID-19 Vaccination in Patients Receiving Dialysis. J Am Soc Nephrol, 2021. - 126. Lacson, E., et al., Immunogenicity of SARS-CoV-2 Vaccine in Dialysis. medRxiv, 2021. - 127. Torreggiani, M., et al., Neutralizing SARS-CoV-2 antibody response in dialysis patients after the first dose of the BNT162b2 mRNA COVID-19 vaccine: the war is far from being won. Kidney Int, 2021. 99(6): p. 1494-1496. - 128. Herishanu, Y., et al., Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood, 2021. 137(23): p. 3165-3173. - 129. Monin, L., et al., Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. The Lancet Oncology, 2021. 22(6): p. 765-778. - 130. Gavriatopoulou, M., et al., SARS-CoV-2 Vaccines in Patients With Multiple Myeloma. Hemasphere, 2021. 5(3): p. e547. - 131. Terpos, E., et al., Low neutralizing antibody responses against SARS-CoV-2 in older patients with myeloma after the first BNT162b2 vaccine dose. Blood, 2021. 137(26): p. 3674-3676. - 132. Kennedy, N.A., et al., Anti-SARS-CoV-2 antibody responses are attenuated in patients with IBD treated with infliximab. Gut, 2021. 70(5): p. 865-875. - 133. Wong, S.Y., et al., Serologic Response to Messenger RNA Coronavirus Disease 2019 Vaccines in Inflammatory Bowel Disease Patients Receiving Biologic Therapies. Gastroenterology, 2021. 161(2): p. 715-718.e4. - 134. Sonani, B., et al., COVID-19 vaccination in immunocompromised patients. Clin Rheumatol, 2021. 40(2): p. 797-798. - 135. Sadoff, J., et al., Interim Results of a Phase 1–2a Trial of Ad26. COV2.S Covid-19 Vaccine. New England Journal of Medicine, 2021. 384(19): p. 1824-1835. - 136. Kamar, N., et al., Three Doses of an mRNA Covid-19 Vaccine in Solid-Organ Transplant Recipients. New England Journal of Medicine, 2021. 385(7): p. 661-662. - 137. Wong, B.L.H., M.E. Ramsay, and S.N. Ladhani, Should children be vaccinated against COVID-19 now? Arch Dis Child, 2021. - 138. Group, R.C., et al., Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv, 2021: p. 2021.06.15.21258542. - 139. Regeneron. UK AUTHORIZES REGENERON ANTIBODY COCKTAIL TO PREVENT AND TREAT ACUTE COVID-19 INFECTION. Aug 20, 2021 [cited 2021 Nov. 4]; Available from: https://newsroom. regeneron.com/news-releases/news-release-details/uk-authorizes-regeneron-antibody-cocktail-prevent-and-treat At Siemens Healthineers, our purpose is to enable healthcare providers to increase value by empowering them on their journey toward expanding precision medicine, transforming care delivery, and improving patient experience, all made possible by digitalizing healthcare. An estimated 5 million patients globally benefit every day from our innovative technologies and services in the areas of diagnostic and therapeutic imaging, laboratory diagnostics, and molecular medicine, as well as digital health and enterprise services. We are a leading medical technology company with over 120 years of experience and 18,000 patents globally. Through the dedication of more than 50,000 colleagues in 75 countries, we will continue to innovate and shape the future of healthcare. All associated marks are trademarks of Siemens Healthcare Diagnostics Inc., or its affiliates. All other trademarks and brands are the property of their respective owners. Product availability may vary from country to country and is subject to varying regulatory requirements. Please contact your local representative for availability. #### Siemens Healthineers Headquarters Siemens Healthcare GmbH Henkestr. 127 91052 Erlangen, Germany Phone: +49 9131 84-0 siemens-healthineers.com #### Published by Siemens Healthcare Diagnostics Inc. Laboratory Diagnostics 511 Benedict Avenue Tarrytown, NY 10591-5005 USA Phone: +1 914-631-8000