SOERTERE

V=AYV ANV T TR &

T141-8644
RRER /XA 1-11-1
F—=r T RKIBTIRANZT—

ABFICETHEME IS TaEEE
BESETBEVLLEY,

TEL 03-3493-7500
ARIFELCLERETZHENDHY
FTDTTTELEEV TH A
FIEFT2avhaEFNTVEY,
FLFEHERICBTREEL,

25001A(2502GPJ3K)

BERARNES A MR EE
MAGNETOM Cima.X
MAGNETOM ¥—< ITw¥o X
SRErES © 305AABZX00070000

MAGNETOM Vida

MAGNETOM Lumina
MAGNETOM D4 —#%&

SREFES  229AABZX00082000

MAGNETOM Skyra

MAGNETOM Skyra Fit BioMatrix
MAGNETOM RAAS

FREEFES 1 222AABZX00033000

MAGNETOM 7YX
SREFEES : 225AABZX00152000

X% bL FYUA aTim System
SREEES 1 21800BZX10006000

MAGNETOM Avanto Fit BioMatrix
MAGNETOM 77/\> bk
SREEES - 21900BZX00138000

VIANE  EBERKE (77X 1)
HERTEEERKS %4
REEEERESS %

MAGNETOM Flash

BIERIR
vol.28

siemens.com/magnetom-world

Page 4
EEmklTd 1S DTI DA ©
HkSE MR DS

lleana Jelescu, Ph.D.

Page 29

FEFIERE BiStER DOYERESTT

DTI EFST TS T1 LB BB HER
DHHEETE

Wenjun Fan; Wen Shen

Page 13
HIERBICHIIBEEHE MR
SHREBLETTIV

Simona Schiavi, Ph.D.;
Matilde Inglese, M.D., Ph.D.

Page 32

Biexponential €7 IVIc&>THIHE
NIHRS L UERINT A —213,
EMRBORSLREDT—H—&
YRS

Lucia Manganaro; Silvia Capuani;
Amanda Antonelli; Michele
Guerreri; Silvia Bernardo; Roberta
Petrillo; Carlo Catalano

Page 19
2DBKU 3D IOA— T5F— s A=Y
24 (EPl) =4V RICHITBERREIBFHIE

Josef Pfeuffer, Thorsten Feiweier,
Heiko Meyer

Page 39
3 FRIICBIIBIEDHLEGRT ERDR
B D= D% EmFEIRFEhEE RESOLVE

Lukas Filli, M.D.; Soleen Ghafoor,
M.D.; David Kenkel, M.D.; Wei Liu,
Ph.D.; Elisabeth Weiland, Ph.D.;
Gustav Andreisek, M.D., MBA; Thomas
Frauenfelder, M.D.; Val M. Runge,
M.D.; Andreas Boss, M.D., Ph.D.

SIEMENS



Contents

extra-MD

Contents

extra-trans

BRERICEHITBDTIDFEA  WHiEEMRIDE

|leana Jelescu, Ph.D.
Microstructure Mapping Lab, Department of Radiology,

Lausanne University Hospital (CHUV) and University of Lausanne
(UNIL), Lausanne, Switzerland

2DBLKU3DIA—TS5F— A *—J %5 (EPI)
= AL E VB IB I

Josef Pfeuffer, Thorsten Feiweier, Heiko Meyer

Application Development, Siemens Healthineers AG, Erlangen,
Germany

Standard imaging

o
=)
m

E
2
)

=

°
o

&

]

©
g

o
[J]
g
]

v

PHIBREICH VI EEMBMRI: SHEEELEETIV

Simona Schiavi, Ph.D."; Matilde Inglese, M.D., Ph.D."?
' Department of Neuroscience, Rehabilitation, Ophthalmology,
Genetics, Maternal and Child Health (DINOGMI),

University of Genoa, Italy

?IRCCS Ospedale Policlinico San Martino, Genoa, Italy

TERIRS BistER DOHEEETH
DTIERS T M 5T 112 & 2B HER DEERETT

Wenjun Fan'?; Wen Shen'

'Department of Radiology, Tianjin First Center Hospital,
Tianjin, China

2Armed Police Corps Hospital of Henan, Zhengzhou,
Henan, China

Biexponential EFILIc &> THitE T hi-ihEd
KUERINT A2 EFRBORLLRTD
R—H—¢BVIES

Lucia Manganaro'; Silvia Capuani’; Amanda Antonelli'; Michele
Guerreri®; Silvia Bernardo'; Roberta Petrillo’; Carlo Catalano’

' Department of Radiological, Oncological, and Pathological
Sciences, Sapienza University of Rome, Italy

? CNR-ISC Roma Sapienza, Physics Department, Rome, Italy

* CNR-ISC Roma Sapienza, Physics Department and SAIMLAL
Department, Morphogenesis & Tissue Engineering, Sapienza
University of Rome, Italy

3T RIILHFBILE DHLBGHRE R DRBE(LDTHD

Z R mE IR ERESOLVE

Lukas Filli, M.D."; Soleen Ghafoor, M.D."; David Kenkel, M.D.";
Wei Liu, Ph.D.?; Elisabeth Weiland, Ph.D.%;

Gustav Andreisek, M.D., MBA4; Thomas Frauenfelder, M.D."; Val
M. Runge, M.D.*; Andreas Boss, M.D., Ph.D."

'Department of Neuroscience, Rehabilitation, Ophthalmology,
Genetics, Maternal and Child Health (DINOGMI), University of
Genoa, Italy

! Institute of Diagnostic and Interventional Radiology, University
Hospital Zurich, University of Zurich, Switzerland

’ Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China

* Siemens Healthineers, MR Application Development,
Erlangen,Germany

* Kantonsspital Miinsterlingen, Switzerland

> Inselspital Bern, Switzerland



BRERICEH (TS DTI DA mfliiEE MRI DiE7
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LB MRI G, SRR OMRZILORERER(LE T HTHD
FEEITHENGY—IVELTHRIIL T\, ILEEEFESIEL.
BADKDFDTVE LIEEIEEHBIRINT 5. BERADK
DFDEIEIG, MREEPZOMOEBENDORIRICKE UREL
THIBREN, ZOFEE-EEMIHIvOVHSH+Z/OY
DIRETHD, LIcH>THE MRI &, BEIROZRIIREE (R
R MRIEBTIEZBE 1.5 ~ 2.5 mm OZEAMRTILTAX)
FEBNNCTESEEHAIEEDR- OB ENTES,

FEIT, 1980 ERBENS. HLEX MRI (2 EEABNZE R DE2 T
ITTERENTER 1], BERRELSSHIURICRISEDL
ITOERE (ADO) DETIL. 24 BERERICHISH TRTS T2
BOERIVEENTHHETHS (2], B MRI DES—DD
ERERFIALINAIE. ARFM OB AEDBEEICHITS
FSUNISTADFERTHS (3, 4], MU ZT01E. &R
TEIVEB I BILEROEEGHFRICEDWTHEREE BB
BIBRIENTED, BEAMICIIHEE. S TUVE., BLU
FEB D <> T MIBEAZEBIC K > TKD FDOEELKE
<HIRENDLOEERICEBRARICLENT, #EITADT
FEANDILEDNEBDMNTRNEWNSREITEDWNTWS,

B S EDILMBE S M EER T DI, BT >
VIVE®R OT) OFEXBHBLIHSEAENTZ [5]. Mean
Diffusivity (MD). Fractional Anisotropy (FA). Axial
Diffusivity (AD). Radial Diffusivity (RD) ® 4 DDAHZ—1§
BO—MEICT VIV 5B END, AD LB DREHEND
AE BRI BERITR>EAR) TR fikiiERERExR L.
RD FZNICH T 2¥ R I BEE@MICHITHILEEEZRT, MD
P FA DL SEIEZIE. BDZ <DIEBGTIRELRIGIRED
5T - BZERICIERBICER LG TV A,

BN T, R [6-8]. RINZAR [9]. FLEE [10,11] HEICH W
T, Trace BIff (FERLE. MD) HERIRZOMIILD—EBEED
TW5, DTI DERFRIIMMEIEERI THDTsH. LB MR &
DTl #RA&EZBELTERADTEN BRI GIMEEEH>TWLNS,

TZ Tl B MRI (MR DO2EFE DTI KUBIEBDTED
UhdnTeamERL, BTV IVERBA T — 2%
BElICT . SUBER MR 7O I)VDBERADSAEE R
EREMLEV, TOMIIVOBRERNDEA L, BIFREE. &
BRAA—I T Z—ICEOTRECEAINDG, BRADF
firtESIC LY. BRIRRIICRITAIBEGIRIRESE (10 DK T
DTI KWEHEIEH G dMRI T — R DEEHATREIC o T2 [12]
INSDESIE. FIGEWMERBIZREDL 57 MRIEBD
JN—RT7%, GRAPPA [13] P<IVFINV R [14] BEDFE
wGEM. /A XBRE [15,16] GEDT—2GB % RO DR
ICBT 5D TH B,

DTIHEEICHELT —2EVEBELRT —2ZRIF T 5 RE
3? Ffeo [KUBELT—21 LIXAEEKTHDH?

DTI Tl&k. ERDORT L DIBOREOIEREELTETIV
L TEBLREEND, THIE—MRIIC THIRMAEELL &
MEEN. EERTIE b =~ 1000 s/imm?2 DOHFZEDILEEH
FFETHRIFEINS T (K1), LHL. RIwVIcEENDE
BT RIBICITERTAE—TH%, MREE. k. &
B RES, B EDRICEET A REDIRHRZRET
BEITIRERMED DD, INTZ. HEBEE MR ODEF

'HYZGAREIE E S EEERLEWIEITERDNBETHS.
BERAVITVREMTHEARNMEDHS,

PBEHEBMICBEEELWVESERNAIEEEICERYBATE
CERECTH S [12,17-19],

DTI Z#BAT : IBIREA A —DT

(Diffusion kurtosis imaging)

BT, HHBOEMELA—RICH T HRER. AVRGE
WL EBZ T, 7505 b EH 1000 simm? & B f- k&R
RESDEIHHST TILHRIMAEIENTES, TORE—H
I& T5E (kurtosis) ] IC&E>TRIEENS (B 1), Lich>T
DKI (Diffusion Kurtosis Imaging) I&. ¥L8T >V IVE—#E
[CRET VYV IVAEHE TS DTl ORI ICRITEI AR S
25 [21], RETVVIVLHSR5NSTEIEIL. Mean Kurtosis,
Axial Kurtosis, Radial Kurtosis (MK, AK. RK) T& %, &
MMITIE. RERBLEVSTEIE. RTEIVROIREARG—
HEHBV HEWIHHEEEIEM CHDILETBL TV,
BRI, B L HEFERTIEFERABDORELNEWLD T
NIFHMERZEE TIEBEICHREIN., BERAEBTIEIUA

EFMEABVNEWND. 2 DOKRELERLEZKDFOERDIHT
HB, PigE. BEEBE EBEBIIIAEEZETIEZ, —A.
NIV HIREER D BMNIC IV REZEMEE S [20] . ILERE
REILER. FEFNSLOREENTOCRICEI>THDOE
{tZRY (FTEhEIEEEMMENTHEREILRDTD) DN
DKI [FHEBEDHIAEEIC DT DTl Z#ise 9 AIERZ IR T 5
TERELDOMBTRENTVS, FIZIE. RIZIVR—XF
feld ROI X=X DR Tl DTI DISIBTIEHR TER Y
REITHEWT, DKIDIBEICE>TEEFLO Y FO—IVEEDE
WEBRITHZENTES (K2), LIzA>TDKI I, FIRIE

BHA (22, 23], MNis [24]. WEABEERES LUMEKRAE
[25-27]. BRHEIBESLUTILYINA—I% [28]. SHMEL
fiE [29]. ##RBBHE [30]. AMZEAR [31, 32]. SMEMERKIBIHE (33,
34] D&MD DEHE A LTS HITFEREN. il
BRELUVZOMDBEANLISHAETN TS [35], DTI DHERE I,
BRIWCIE o)l EMHENSH 30 D BE—IELO b E B
. b=1000 simm?) AFERALTITSTENTESH. DKI#

Free homogeneous Biological tissue
medium Gaussian Non-Gaussian diffusion
diffusion
i) - (;) _
In(sa =-bD In 5= F(b)
P(x,t) P(x,t)
‘ZDI
0 X X
(x?) = 2Dt

1F

‘ X '..-'\
R

Radical D
- “ »

0
-0,5
G -1 Fractional
S Ansiotrophy
-1,5
-2
0 1 2 3
b (ms/um?)
n (1A) B EBER (10) DERYIR) DESGEHTHELGEAETIE BUBRIEAVIDTHIES DT ILBERIE A VAN HEFENS, (1B) IMEE ((10)
DFREERYIR) DL FEEFRERTIE BUREFEIEPATVARE TR EL KVROTH EDRY) (K755, (1D) IEBEEFAMRIES (REE) 3. &

Wb1E (~1ms/ u m2EFzl£1000 simm2, AL >3 OBIRIHS) £TIEA VAR (LY DREE. DT IS TESRD. ZTORITER/\Z—H5ik
B, PRREDDbME (~2.5 ms/ u m?E7zi£2500 simm?2, J'L —DIHRHR) TldZRBAE (V'L — D3RR, DKI) THEBITES, 33mLEDDTI(IE) &
DKIAR) ISHIS T B/INTA NIy IRy T 5 R Y, & AT — b/ \— : Diffusivity 0~3 u m2ms, FA 0 ~1, Kurtosis 0~3, KIEFFaI %15 T [20] 551 BLT



EITE 2 DD LAV TIVAREL RS, HAMR DKI 7Ok
)L ClE b =2000-2500 simm2 D1 )L A&#) 30 ERBINY 3.
£70r3J)1 (b=0,1000,2000) #> T IVAF+ LT
FBEL. IXNTOLBERAEGKR CITI—KRE (TE) N—=EIC
BBEIICTBTENEETHS, DKI#HEFE] CSEA?'%?—Q
IFIRTE. 2 mm OFFMRET 6-7 7 DRREFHE TS
£,

2=zl (BAVEZTNULDRIVFVTIL) O dMRI 7—%
HHBTESRLIICEDE 1-VT)VEHBLT ZDT—4

B 5

AB|>AB+

& 8

)

Axial B TH&. FACRD, RKICDWT, B3O NBENFRENSEE
(ABD) £7204 RIBHEDERE (AR +) DEICERENDD. ABiLtt
BLTAB+TIFRKOABEIETLTEY FADETFPRDDEFLY
SR DILEREICRAT VS, RIGFHFRIZF T [28] 55T,

T LT R OOV AIRICIBNN T 5, DKI DHEED ATEEIC
T 2 DUEDV IV EFERTHTET. %/T\’Wcllz <
$ 173 Orientation Distribution Function (ODF) D#EEH
mLEL. FIUNITTAICKBDBEREERILL [36, 37].
| TS MRI DR E X T IR O YR EMNE T )L O
EITBLIET —RICTBIENTES, REE DT DKI fE#f
ICEDTIESNBIBIZ (MD. FA. MK) &, £IEH - HEZF
MO XITHRTHBH LG TOEANTNSDILEIE
EICALTRCEBE LS LO2EVSEKT. REMEITRT
%, BIZIE. BEBITHITS FADETIL, BHBE, #ETL =
IO A=V RIGERRBEANZALICE ST ERIETNDS

OJREMEN S S [38], FHEMERHHIC. HEDHEB21T
ICB T DI DENEFZNETILHEAETNS,

REE
BL—RUTHREINTORETIVIE. ABICHIFDIEED
2—OVIS—hAVIERIE3—OVIS— AV N ETIVTCHS
(®3), TTT. F1DOAVIN—FAVMIEZRDEFTIERL.
F2DAVIN— AV MIBWMBEADZEEEERT, LIchH>T
BREICHITRIEED 2 =TV IN—F XV R ETIVIE 5 DD/IND
A—=%I[f, Dy, Dy, D, ., p,] ZIRZ. TN 5T NTDKI RF—
LERFED 22—V DT —2EEE BV THIICHE TES,
BICEHEIN. WKOHDHIBERS LU L FTORIEMZE

.
ES—

/

B Intra-axonal
space

space

CSF
N

=[f, Di,"’De,”' O ]

Collection of sticks

Extra-axonal — Gaussian anisotropic

Gaussian isotropic

Markers of:

f f: axonal density / loss
Dispersion  p,: alignment/ pruning

p, D,.’”: axonal injury

D, I inflammation

D, | : demyelination

1-f

HEICH I DIEMOIZEET )L, BRIFERICRVVE (FFRLOOMAR) OEEHRELTETIVEEN, TTTIFILENL Diffusivity D, | T—ARAIETH S,
TNSDEHERILRT 1)L DI Water Fraction(f) % (5. Z Orientation Distribution Function (ODF) |ZEREFEFREDERERB WV T/NT ARy
I TED, REEICIE. RADHEE p2 DHFDNBEHEES N, TNICKVBRANBOAEBENESNS (FEANICHT T 2R TlEp=0. TLITEF| L
RTldp=10EE) , MRNDKIE, FTAHALEESBICZNZNDIiffusivity Di j& D, + EFDOAVREAMEELLTETIVLENS, F30DaY
IN=b AV RELTEZSNDDIE CSF T, TNUZEIED Diffusivity Diso = 3 u m2ims (GRICHIT 2D BEEKDILEER) #EDOH IR DHEAMEELELT
ETIMEEN. RTIVD relative Water Fraction(fiso) & thsh %, TDIHE. FEIEEFHH1ITEBEIICERILENS, Stot = (1 — fiso)(f-Sintra + (1= ) -

Sextra ) + fiso - SCSF

[20, 39-44] [LFOTEMIFTONTLBEDIC, BINTA—LIL
TNTNHHEEICREL. AEREORENGHFEMITZ
WET B,

FE3DAV/IN—F AV ME. HERER (CSF) DEAE fiso &
EETHDITFERINZTELNHY. 6 DED/INTA—42EL
T CSF RED =8 D fiso BNMEBMETND, LHL. E—L_U)Il:
TYVRITLEBE, 3—OAVIN—MAVNETIVEHETSBICL
2UJI0 TE RARRALB T O—T o ‘/’7“X4‘—-A%Eié?‘—
ADRETHBHTEHNTBENTWLS [45],

Lfeh>T. BED 2 —OVIN—FAVRETIVE ;tﬁaﬂ;r“fu [
IVEBBERSHBEEZSND, 5 DDINTA—ZDHEEITI
YhHECEEI0EIChTE>THY Y T ‘/’J‘ifﬂhf:b@
(1000/2000) simm? DY 75<EH 2 DDV T IVHRETH B,
NODDI[46]. WMTI[47]. WMTI-Watson[48. 49].
CHARMED[50] 7x ELBEENDERATZE T IVDRENREICD
e TIRETNTWVWS, INSIEINTHEEET IV [S1] DT T
R—g2TEDTE —RICHARIERGEY T U7V —IV%E
FERLTHETSHTENTES [45, 48] (K 4), EERTEIE
INOIBEET IVHEEICHERINDT L. ET VD0 h%zz
FELETEBDITNTA—2EFIEDBICEAELEZWVWTETH
%, TNICKY, BNTA—2DEYZNEE T T BE U
BEEIEIFIND, RIE REENICE. FIZE. J>—F

> 2 shells
b o< 2,5 ms/pm2

v

} WMTI-

DKI fit Watson

= 2 shells
<10 ms/pm2

v

max

Rotational invariants } SMI
A

Combination of tensor
encodings (+ multi-TE)

Bl @A) BEE 7LD WMTI-Watson DRI, BIZIE, [48] DR TRES

AV MEBEEZNEERTENTES BIZIE. BHFEEICEK
) De 1DV T % [52]) B THUE De BTG ETIVINT A—4
THEHRICDIHMEZBDIENTES, De MERDEICEE
ThTWBHE. FEFNELIZETIVDRID/INTA—4|C
KO TR TN ENTLES [53],

IEEEE T )3t DTl & AU e B EIEEE DR DV OB
BEREENRELIEW DD OHETRIETNTHY., i
BESRNES, RHERHRE. REEL. SREFELE 2
MR ELGEDELDYERERMEICE W TEETH S [27, 28,
54], BIZIEAZEETIVTIE VIEROBEHERETIE. IV bO—
JVBEE LT, EICEHROKDRHNFED L. EENDILEE
DMEMT BT ENRESMTENTEY. ZB%BGIU‘/U)?E{E
EHESHMBENATEORELTIBLTWNS [27] , RAEERES
ICBEWVTIE. TOETIVIE. $$%J<ﬁ$t$$?§|ﬂq¢rf:%&$o);m9
FHESMIL, BHEREANRRREGDRELTBLTNS [28,
52], BHRAHS, TOETFIVE 1—-YTIVDOBKRT—ZIcL
FORRITATNTERIBEETERVWTENTERENATL
% [55] . > C. KYUILEICERT BzdIciE. 1=V DTI

BT 7V TCHOFEBRRADILER O IV E 2—1)VE S
& 3=V DTHICEB T 20BN DD, HLlE. 2RILEAM
DENMNTTREFBEELEL T EALL KVEEEINAED
FHOIT ORI EoNETEE=BERAT 5.

7z https://github.com/Mic-map/WMTI-Watson_DL CHIBRIEERTA—75—
ZOBEFERLT DKI 71y "D SEEHRE TS ENTES, (4B) Standard Model Imaging (SMI) Y —)LR v 2RI, (4A) D& S HERN S DKI T —4
(2 =zl bmax|d 2500 sSimm? £ T). 1zl bmax=10,000 Ssimm? £ TOXIVF )b, BIUEHALR IV OA— T2 LEREILEHRI > O—T 1>
I, FERIVFTESS]| 2 ERLICAEDEAEDENLS G LUVBERT—2OEAICEL TV, 'V —IVRY T I, https://github.com/ NYU-
DiffusionMRIISMIZFIBTE2, SMIX Y FIE5FA =18 T [45] H 55 AL T,



féRBE

KEBICHITAILEOET ) T BELVERETH S,
FREETNIEESE TlE. ERIRCRUVLONSHEBEILEEFR (A
>20 U RICBEWVWT KARILIV/IN—F AV MRICEE
BTEHREIINTG, OV/IN— M AV MEDOKZBEETET VLT
SREND D, . REKRBEICELIZETIVEHS
Neurite EXchange Imaging (NEXI)2 BMREE N, TOET
JVIE. £IHIEER MRIZE [56, 57] T. ZRIT Connectom %
& (Siemens Healthineers) [58,59] C. Z L {&ETIL 3T
MAGNETOM Prisma (Siemens Healthineers) [60, 61] T %
KIS, BREEENTWS (B5), BEICHBIZE. NEXI
22—V IN=bAVIETIVTHY, RN - ADKD
FE5EDEEL. MREEEEYS IR t. 2 HE T 5, i
HERITHIET. BREERE (Z5THIFNSENGTHES
N%) ZLYIEREICHTE T 5T LN TE IREEEDRIE BRI,
HREEORE ML IRBE DRI ICBHET 2ABIEE &

5% [56, 62], NEXI /NTA—=ZDINAFI—H—ELTDIEE
\&. FIERDRIERIRIAZE S S UERRMZED B L TIEHZHD D,
FRTDITRIEEEN TR [56, 60, 63],

LH L. NEXI ETIVINSA—ZDHEEITIE. HAEEETLLY
RECERWEB 7O IIVARBRETH S, R (q, t) Z2[H
DOERTTE. b ENTENTZOTIEEL HMIILTH T
VI TBRENDD 3, SVERANIE, ILEEERE t A B
TERENHBH. TOHEEIZIRTE Siemens Healthineers
BREENTHEBY — 7 VAT BT ERERZ L, NEXIHESD
ETAEICHETOLVICGERLTWSDH THEH. BE
JR—MTBIFBKABEREDRFETITITIERWICHAFTE
%, TOETIVIE. BELYSBIKAEICELEFETSMEHS
EEBTBHLOIHIRTBIENTESRD. IRTOETIVND
A—RERERICHEE CEBAREMILIRERAEF THS [57]

D, | M Intra-neurite
, \ space
y t

Extra-neurite
space

p=1£.0,.0,t,]

e’ “ex

|
|
| Collection of sticks
|

Gaussian isotropic Q

Markers of:
f: neurite density / loss

: neurite injury / beading

D,

Trans-membrane b . .
exchange t, t.: mem' rarle integrity /
myelination

(5A) NEXI &, fHEZeteRK R | RSN ER DI (C T THRZRRIE S V4 ACERB LI ERICEVMEE LTETIVEENS) . MIRISMLERER De (5
FHEEARE) . BLUMBEREMIEN >/ \— b A EDKD BB, D4DDINTA—L2EFD2—AVIN—b AV METIVTH B, (5B) £ MDD
NEXI v 7, [59] KWEFRI A 1S T A LTz NEXHE AR E N TV B O— K https://github.com/Mic-map/nexi  THE TE 3,

*Siemens Healthineers RERIE: ARHIL FREZISNZT7AT7PAVELTMODVWTGRRED T, RELHE . REHETN TV, F3FRAREINI RO EE8 51
BIUIEIBRSBFHEEHATILDTIIHYVER A FRORRELUCH AT EZRIET LD TEBIVE A,
*pulsed-gradient spin-echo (PGSE)}EEEEIRICDULNT. 70— /IVELIDHZE b = (Y G8)2 (A - 8/3) = q2t TT T, qiE ZERINABZEAL, thdILEBSRA.

FRERFELARPTH). TRINTOEEA BROAFARERIRETET A,

R BAT : B, ik, R

LI H W TH. TR MRI DESHIEZEM T T /I th#E
B TOHEBAICHAEINTE R, UL, BRUADEEHT
WHEEE MR ORI REMEZ S| EH T IIE. BES dMRI 7Ok
IV ERIBEICHEILIT 20 EEH D, RIRIC, BUNCBWNT
HILHET IV DOEBEOBWVHEICIE. BROIE—7 X
CTEBFERATCELVEROILBEEZI/N—F5L5%5T7—42
INETORIIVHBRETHY. ZL<DHAE. pulsed-gradient
spin-echo (PGSE) R F—L%Zi#BZfz. OGSE (Oscillating-
Gradient Spin-Echo) *[64] ¥ 7z (& STEAM (Stimulated
Echo) 4[65] DL g NHEFERT 2.

PGSE |ZEEX( OGSE & STEAM &, TNZNiEBH DT LN,
FRIFRWMEHMEBZRECES, INSOIEHTO—FEA
T BTV ELTHIRRIRE CH B, HRFAEER T > O—
Tav9 (Frbhb. 1EIC T DOEEDES B> THREL
FEEEMMETEEFLE) LOMNCEH, 2RTHBI > a—T1>
JEAREICT B LD IR SN AE A REEENS
TEDH B [66], TNSDFER G C2P (https:/igithub.com/
filip-szczepankiewicz/fwf_seq_resources/tree/master/
Siemens). BB AF TES,

&S5 IS MBS MR DRWSANR TH D, TDREG—IEIE
DTI DS TIFIR ALY, BE. BHEADEREIE. Mg
AZBICBVTAEDFEDREBERELTET IMELEN

Meningioma

©
1S
[e]
]
(]
A
Q2
=
[T

%, ZTD#%. PGSE Ik PGSE & OGSE BIEDHEHEHLE %
FRLT Y77 N EGEBER S C TR %
ZERBTELICKVMBRT A XZHETEHIENTES, 2D
D—HEHEET)IVIE. IMPULSED (Imaging Microstructural
Parameters Using Limited Spectrally Edited Diffusion) [67]
& POMACE (Pulsed and Oscillating gradient MRI for
Assessment of Cell size and Extracellular space) [68] T &
%, WSOHODERRMZETIE, #IZBEE [69, 70] PRIIZARD
A 7] OFBZBSNCT Dol HEDOERRKEEZF
BI2ZLICRILTVD, SRR T Y O— 71> % ER
T5& BEZERT HHROEREANSILLAIRETHS,
EROMBGL 5B RIIVE. EHMICE R LI iRRie
DoBBIRIEINEEZEZTHED. EESDRTIVRETE.
B—OILI>a—7+>% (PGSE 7zl OGSE) ETIER
BROIBUFEDNTREND, ZRFTHEH T I—T VT Tld.
Imicroscopic FA] (u FA) Z#iEd2TET. chsm2D
DT—REDBTHIENTED, TD U FAIE. BT
(3BTRS RGP ERMIE CIIIFEITHE <GS ([®6),
SR I D=7V D1 D207 7A—FIE. q ZEEE
B A=D V) K Ted T VIV (b- TV IV) T A—T+«
VUTHY. INE—EICEBDOAAZERANS . KEic&>
£ 92 ((BEG)) LHMARKERZERITSIENDES
[73,74], &REMIHLIEAGDO—DIE. BESMEEAIRZ S
BETHRAG 2T DIERZHATHIETHO[72,75,76]

n BERRAE (LEY) CBEHRE (TR OTHERERO DY M AMIEBELL TS Y, FAIKEW, LHL, SRS T I— FERERE T I— FesEabEr
RGO OHEE NI u FAIL BEERREE CI3 R < BHRETIHEL, TN TNSDREICHDRLEELHHEE BRIDFICRA Y F) ILL2HDTH B,

MIFFFAIZISC [86] 055 IALT.



(X 6), Ffeo BREOMMBEDSHE [77] ©. BEDIREE
TIVOHEEDUWE [45] ICHERATN TS,

Fra 1d. FEEOMIIEEDRHE DI LB B EMIRIRHAER [76,
78,79] Z#EBLTIELLY,

AN RDOMMEEICHEWVTE. T LEBE/NUTETIV
(RPBM) Z AW TR A HEE CESRELIME
XiE (BEEEETHER & FHEIREREHTE TESKOIL
BAIFIFFIREINEZVABEREEZERLIZETIVARALSM
%, ZDfsH. TOETIVITIE. STEAM DRIERAF— L& fH
BLTILEEBRAZET . T2MEOEREDKT—ILEDEET
Bfelic TO—BE (TE) L EBTHREAHLETH S [80],
COETIVIE, BERURSEEFIRORE-DIFICHIIL
[81]. BRICMITIFBEMBERDNEN & OB TESRRESED
&%

B#%IT. time-dependent diffusion MRI (& B &5 D ik iAE
DEEITHRIID, RPBM E7)VIL. BIEICEIELFERE
ZDHEDOEEICLDHIFERDELEHE T HHIGHAETN
TW3 [82], BETIE. TavIvIBBIA+OT1—ITx
9% time-dependent diffusion MRI DEERIGELITHNATL
% [83].

ERETROA RN

LB MRIES ICIFARROMEEIEICBE T 2IERICEERIER
DEENTHY. AVXMAEELN® DT 282 5% Cld.
B LNV DE#E K UREBO DEENIEBEG T BTN TE
%, REICHTHRELFESEFZR LS ERHIC. BRICH
WCRIVF VIV T —2%ZHEMICIE T 5T EIEMENH 5.
e, EERPIEMI Y I—FORTEEETSEE, HIiC
B DIKABEREDA A—I VT ICERE. KUBEGHETO
FOILDERZRMT D, BIHEREPERKRELF ARG
BREERAT2OICE. EENHBEES Y TZBRRDT —
J70—ICEDKIITRETHDHARETHANICDOWT, O
1 TR TR T 2REN DD, BIZIE. EHERRE
% [84] DI HICRAE SN KD BILBMIREIE/ NS A—42D
HREWT —2X—XDNREFMEFTHS [85], cN5DT—4
N—XICKY, BETEICECDERERFTME T ST LM ATEEIC
5%,
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% [9] » 3T MAGNETOM Prisma (Siemens Healthcare,
Erlangen, Germany) T/5hiz MS B2& D DTl 512D HI%
K1ITmd, TNESDFBERIK. KPEDIEM. STV EBWR

DD TIF =V ADFEE—HLTND, ESICEBRRND

El. DTINSA—ZEDEE . Eﬁ%%?‘y?i’éfcﬁ_%ﬂ
BEILEELT. MS EED NAWM ICHEIMICRO SN,
WIZZEL TlEHADNLEH IO HEEE LTS, Th
SOVAFRRIE. TNSOEEDIREKICHZEEICDVNTDH



WIEEERZSZADLDOTIIGEO DT MS OFIERERFEICH LT
BHEEELLEHEICRSIEWORORMICEIR L [8-12]

DTI RN R B E T LT RIF A REEF DT LD G
TNTWABH. FREZHRFEMIFEL MSEEDRKICHS
REDFEFNTOCRZHRTHILETERN[13]. Th
SOMEERRTZEHIC. JIVFVTIVAMRI Y—Fr >V RE
ZLDORIVFOAVIN— P AY MBIESE T IVDREEN TY
% [3-5] . 2= IV—T 2V RERBWTELONSERERNICER
AETIHEICILHMSNIE2 DD E TV Neurite
Orientation Dispersion and Density Imaging (NODDI) [14]
T 7 JU & multicompartment Spherical Mean Technique
(SMT) [15] ETILTHY. TNE2 DDETIVE MS ITHTS
BREHNBWVWTENEBRINTWLS [16] , BEICEHETSE.
NODDI (& 3 DOWMMEERS: | MR (LflZ#HER) . H
AN (Ffold®EN) . MEFRRI >V /IN—M AV M EXF]T S,

Bl Vs icBELE 1 ADBEISOW TSN DT #EERIEE. £
BRICIE, T & T2 DIRZEHBABRIC R 2% MPRAGE & FLAIR D Axial Bl &
9. FRRICIE. IFIEBCAS A AMD fractional anisotropy (FA). Mean
Diffusivity (MD). Axial Diffusivity (AD). Radial Diffusivity (RD)
Diffusivity DEATIE mm?/s,

IN5DOVIN— AV MEFTXTEED Diffusivity (AD &
RD OBER) &#IFL. ILBIIRRORER 5 X 5% AFHER
EEEDH. 3 DDFLZD AMRIESNESNS, BRI
RIVFOAVIN—I AV SMT &, BEOMRIER - A3
VIN— M AV MU EOWMERNSEERE T2, T1vTa4VT
ICEKETFIERWVSCE T BMBRREDRE. B, Ao
ICHRITEREMRERIMETBHTENTES, T5IC
NODDI & L&Y 5&. BHREKDBENZEELZBEZENICLY
RABTEDTEGWVD, @IEZEREN - 24D AD ZEELEL
DT, AESNIEELSZTNSEHTETHTEHNTES,
2 clE. BICHEZREICHLTRCTIVF IV AMRI Y —7 > X
HRAUWTHE Lz NODDI & SMT OfiliigE< v AR, &
#Z5(&. MAGNETOM Prisma 3T ZEWC. JIVF>T)VILER
(TRITE| D#RRE=455/75ms /1.8 X 1.8 X 1.8 mm3, b
&0 /700/1000 /2000 /3000 simm2, &1/ 12/6/201/
45166 HE). BLUMEHDEH D% LKL b E 0 simm?2
ICHBVWTHEBEICAATY - RLRGE 12 =170, B4

MPRAGE

extra-MD  extra-trans

FIL MS 235D NODDIE 7 /L& SMTEF ILASEBS N HiiaE< v
7, LERIEZ T2BXUTHRENRZSFLARB KLU MPRAGEY —47 X
D Axial BifE RS, FEIE. BERABLOEAMEESHE (CVFHET
ISOVF) &NODDIA 51§51z Orientation Dispersion index (OD) @
Axial Eif%, TE&IZ. intra-axonal signal fraction (intra). EZ4 Mean
Diffusivity (extra-MD) & & U #13: 7} Transversal Diffusivity (extra-
trans). SMTH 5 1§ 5 N fc Axial Diffusivity (diff) @ Axial & .
Diffusivity DEATIE mm?/s, ICVF : #BIRIATED 2. ISOVF : FH1M4EATE
nE

BIRERZATHE. NAWM, MSERERY 721 7H. BLUEE
W (HO) MICHI285REBEZEE LT, #MEROTLHE
& RBRT BILEIEIES MRI KWBONEI Ty THLER
LIcHER. ZBESIE. MSICBIFRI TV EHBEDOREIL.
RELEBICRAZMB/OMES CIRILL. HEBDREIEMD
REINEI TV EBRICEVAEGTBEZTRIILE. REIC
BIFBITV 2V EBROMRIRIL. HEEFRBEDRARNINMGES
KUEMEMAEEEZE I 2EEDOEEICEEL TV ERE
LTz

RERGHERICII T MRBE. RE. BB SECSIEE
HDHB. EBEDT >V IVIROKXOEFZRITTBHICIRE
ETNEESI—DDORIVFOAVIN— AV NETIVIE. HEE
ARG MVAA—=D 25 (DBS) T [18,19], FIHICEHEA
IBE. DBSIHIIERZ B OB E A M T >V IV EFH ML
BT VIVDART MV DEFHFEDRELTETIVILT 5, B
BEEEAMT VVIVIE. BHEREERMREIETEELA
BICBEALTERET 2. FHETVVIVE. BEOKT—ILD
fazkl. B, #HiEMtzZRMRTHEBDONLFHPRENR
N7 MVICHBES NS, FERIBRIESILEIA Y b LIdHERA
FREEMEERERMRT S, Lieh>C. DBSI Tld. #81E
BEZ DTV IVORMELTET IMEE N, HRLGHAE
LEFOBRKDESELTETIVEENS, DBSIEZ<DAE
HBEROEMIEES T v T4 %4>, COETIVEERT
BTET. BERTEIVITEWT, Fiber Fraction (FREEE%
& B ). Non-Restricted Fraction ( 8 £ % 2 # K Bt ).
Restricted Fraction (HEBEME% R BR). Axial Diffusivity & &
U Radial Diffusivity (DBSI AD &4 U* DBSI RD, &N e
MEBEERE R, B KU fractional anisotropy (DBSI FA,
BEDRHOREEZT R DAEBHIESNS, TOETIV
& MSITHITRRIE. #R. STV VIBEDOIFHRENTEZL
ICFERTES, T DHF Tk MAGNETOM 7T (Siemens
Healthcare, Erlangen, Germany) & 32 ch A\ RIOA L &fE
AL, ER®D DBSI [21] TREENTLZ 9 DITYI—FA
BAF—L @ -BHLOE-GIOEADOLMEIYI—FAR
THB). &K bfE= 2000 s/mm? (TR/TE : 4,000/62 ms,
DEREE2 X 2 X 2mm3) EAWT. MS BELEEREICH
WT. BEZHEZEE® NAWM OMIAEIEDE N E LR LTz,
COMRTIEONTHERIE. REDETETEEGZERMIEICHITEE
Z & NAWM B DB D11 E LT, DBSI FARD S IE
DRI TREZHRT 2D TH>fz, TDTEIEF . DBSI
D MS OFFREEBRF L. HKEDETLARERIGEEZX

15

VT BedDELEY—IVTHBTEEATBLTVNS, T5
IC. CTOBOTORIVIEITRBICAZITBEINTCED,

&EIC BRIKRMICEIRAIEEE S — DD A& Diffusion
Kurtosis Imaging (DKI) T % [22], DKl & 7% <&
12D b=0s/mm2E{&ICHIZ T b=1000s/mm2 & b=
2000 simm2 M 2 DD/ 1)L EFEED MPG B R DIZHEM 75
spin-echo EPI & — 7 VX ZFRALTEATENTES, TDX
SHEBRITELY,. white matter tract integrity (WMTI) £F
IWEBWCEBOMMEEEETIVEL., ER7IVICHITS
intra-axonal diffusivity (Dawn) & & U extra-axonal diffusi-
vity (Radial Diffusivity & & Axial Diffusivity OF7 ; £
Z N Deradial 3 & U Deaia)« Axonal Water Fraction (AWF) .
BLUBMBRNTEOEHEZEE2LTHTENTAREICED, T
ISR ITRTDETIVEIEHERBIIC, WMTIZIEFTHREMAD
BENDH. REDFETIFICIIFERTERL,

MPRAGE T2w TSE

3 X
=

restricted
fraction

fiber non restrict-
fraction ed fraction

.3

i
-
1

fractional radial
anisotropy diffusivity

HBHMSEEDDBSIEF VARV THELLHBIEET Y 7O, L
ER &, T1&T2DIRZE B B X5 MPRAGE & T2 3858 TSE O Axial EIR & 7
I, i, SREZRRRODIEEFICATE T SN 9N T DBS| s
AN YRR RO BT mmls,



LH L. NAWM D EALICIFIER ICBERTH D, [23] Tl
E & 5 |& MAGNETOM Trio, A Tim System(Siemens Health-
care, Erlangen, Germany) % £ i L . DKI BB D twice
refocused spin-echo EPI & — 4 > X T b {1000 5 & U
2000 simm?, %308 (RVEL2[E) &1 EDb=0s/mm?
Eif& (TR/TE: 3700 /96 ms, FOV 222 X 222 mm?2, matrix 82
X 82,28 RTAR,2.7mmARATARE) ZEEL. 32 AD
BREMREEL 19 AOFE - Bl —HEENERE HO %
WMTI FEIETHB LTz, EESIE. WMTI DIgIZIE MS BED
NAWM DZLICBERTHY . TEEERBARADT EBELT
WBZEAETRLIE, TOTEIE. WMTI DIEED. 1ZZEHY7 DTI
IZEOTIEONSIEEE. SURBFNICFENT. BERKRNIC
BHDH D, RANGIEIE CRTE CESIEETELTVS,

#wZ & normal-appearing grey matter (NAGM) @
S

WMEZE NAWM OMEEZ(LICBE T 2IERIE. BRARRIR
MaEBWEREDN D DT ENHREENTLSEH. MSICHIT518
MRAEBREIE. FRESIOFRBKAEICEEELTVS, Lk
Do ERIRMIRME%ES| SR TREZHI T BRICIE. WM
& GM DJFRZE | b DEH DFEDOF e ZER LIS
57z [24] . LAL. ElT@EN Tz dMRIE T/ (DTl DKI,
NODDI. SMT) DWLDHME MS ICEER TS GM DIER#ZE
{LEIRZBEHITERAEINTLSH [9, 11,12l Zh5iE WM
IFBDREICEDVTVS, GM OIREISER T 554,
BEROBRICIFFFISTTIEDRETH D, <. MRDODRED
I DFRAR ISR E MR AR E D MRI 1512 % IEZEEM ICHE T2
Soma And Neurite Density Imaging (SANDI) [25] € 7 /U A
REIN, TOETIVIE. V—< @EEMERESIUTU7
fRaM) LrRZEie (BhER. BPRZEE. JU7ER) B Th
TN—EDAETOIREFFLOOME (T#) ELTETIV
fEENZELEV 2 DOREELGELTEDEREL TN
%, INSDRED T T, R, V—=. fManJ7+Iu
2 FE (fneurite, fsoma, & fextra). BT DY —< F X
(Rsoma). Intra-Neurite Diffusivity (Din). Extra-Cellular
Diffusivity (De) ZR&ZBTENTES, TDETIVITIK. ER
RTHERATNZEDLIDEEE 6 BEV b EZESTTIVF
2TV AMRHREDBETH S D, RIEDHZE [26] Tl
Connectom & (3T Z & M MAGNETOM Skyra B\ — X,
Siemens Healthcare, Erlangen, Germany) %#{#fRL. &Ab
fiE = 6000 s/mm? TR L fcE &% A L fz SANDI T L B

'"MAGNETOM ConnectomI3RIEMZEHRTT, Siemens Healthcare TIFTDYRAT L%
BRiLIBFERBVELA,
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fsoma. fneurite. Rsoma DRIFEL . HEED GM B ICHTzD
TaWMEEMERDTEARI N, KLlEFA, 64ch D
{504 )U%& {5 X fz 3T MAGNETOM Prisma . spin-echo
EPI ¥ — 47 >R [27-29] ICE D10 20OV EREL
fe :TRITE=2600/80ms. %3 f BE2 X2 X 2mm3,
GRAPPA 2, SMS factor 4, b{i& 0 /500 /1000 /2000 /3000
/4000 / 6000 s/mm?, FI&ABDAEIYA—T12ITE
r)bdrfzt) 1516132140140/ 40, BIUOMAMETO—
TAVTT1 DO bE=0simm2Z/KLTIc, TDI—F R
ERAWAHTZET., EBRARA MRIZEE TSANDI EFIVICHEST
GM & WM OB EERRICGHME CESTLamLIz, &5
2. REITES GM DHEEEDZEIc T 2REZRL (B
4). FLAIR & MPRAGE TIXRILLS%B OV SR MIRASH
ERICIIHHEBEN R AREZHAI CESREEE R T IE

neurite

B 55 Vs BEDSANDI EFILE RV THE SN HliEEE. Lk
MPRAGE & FLAIR D Sagittal B C. £EBDXEIE GMKEEDMEZ T
T TOTIC, BRRIE, V—< RN T FTIVSE (Fneurite,
fsoma. fextra). FHY —< ¥1Z (Rsoma). H &L UIntra-Neurite
Diffusivity « Extra-Cellular Diffusivity (Din. De) DIZ(F[EL Sagittal &
§ERY, WEITHIGL T, fneurite, fsoma, Rsoma BN L. fextrad
De HMENIL T2, IRERE D Bi1lE mm2/s, Rsoma DEIIE u m,

T. GM & WM ZRIBFICANRS T EDBERNEZED R e AT
LTtz

bSO NS 71 LIBERERE

dMRI Tld. #EEOHE T THEL HRDHERLES
FEGHMEHEL, BENTEEEEANSZCEETES
(®5), BEDRSTRTZT1a - 7IVIUXLDREIFITEY.
TR GEIVFIIIVigBREERLT WMBELH>T
HNSUMNBEENTESRLDITHE ST [30], TNSDESICK
Y. HEOEOMEFOER. A, EX. H5LNEFHRIt
JVBRIOMEEEIRIEL L TRINDIGHEBROBENLEE
b2l T iEEER OMEROBERE AL STEITLD
TH. MS TR T 2 BENGRHEDOMENAIREIC TS, b
SUNIZ T ERAVDE. BEOBRIERIGHE I A T—
vavl., ZOHE (BERINCRGEOH. AMRI HSDM
G/ N\ T A—2DFEE. BLU  FlldtOEEN>—7
VR, RUa—LTxE) ODHRERETZEL. TS5 T7EH [7]
ZRWC/O— NV GEENEGEEOENEDITTETEET
&%, 3T MAGNETOM Prisma CRIT TN ILF T I
dMRI =47 ZHEDRELCT—2EBWT. UTDOLSICER
TNHIH S5 [31, 32, 33]

1. RRBEICIOTHROBERDDEHEDEZEZFND

2. MS EENEEEDREEBEEFHYOITEH. M
MBEBRICEDI VN I 7L TESNEEND
XU M—=LITT S T7IERAEERTS

3. EEMNEEIRY b—LICONX MEHEEIRFIEZ E A
TBHILILEY, MS BEDHEETS

T5IC, INSTANTOMBEITEWVT. dMRI D SESN TR
BaBRRRELLEBR LA BOBERIEREIN G, D
T&lE. TOBDDH. MSICEIF2EEDHEIRDIREICH
BANZRLEEBRTDDICERTHAHTEARLTNS,

ADHIELTIE [17] £BL 3T MAGNETOM Prisma CTREEE
NE<IVFTIV AMRI =4V ADT—2EfERLT. MS &
FBEHCRDYO—/N\IbRy FT—T AT ZDEWNEZ DR
ExHAEL. X7 b= LDOEBRICERINIIEEN—Z DM
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connectome

tractogram

parcellation

_’.

B #5E TS5 0f IVFYTIVOAMRIF—Eh SEIEL. 1R
#EIEI)T5 (FOD) BIEA e L T S B/ R A BN BUPIODBIR (2
MI=L542) [THVTESY bS5 LEERT B, TIERERLTRE
BE/S—tL—Yav L, FSUMISLEEHEDETIARY =LK
M35 MADTNTOEELZOREERTY ST,

MEE< Y T D MS TR ZEER, BRI T7EOREEEN
LTFHELZHRED S S [34], ZDRER. SHERAMMEER
DTEHMIFENART b—LHSHEEINT S THIEIE,
MS DREITREBRTHY., BRNESICROEELTVS
TEDRENT, MBHIC, MNMLEM R T2 Y 7T
SOTEMIIFENORY b— LS ENfeRy T —7
DEEDIEEIE. 21— 0717 AV MEEDOMEEELRSH
BLTW

3

dMRIE. MS DREEEZ LW LCEREL, EEDFEBP. 15
BICEOTUTBRICNTEREEZEZZ—I5H LT EELR
BERILTIENTES, TITE INETTRITEREINT
TIEH 2 e CDEADARISAH L BIENZERRHIZE DA%
e RIVFYVIIVY = R EREGHBEEETILPE
BNNSINI ST LBHEDEBTET. SRMEBLEDR
BEEORBAVPEENBEEDELDEZZ) I TITKVICER
IIDHREED BB,
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- Echo-Planar Imaging (EPI) ¥—4s Y RICHBITBATL YV T
A FT7HE) ICEERTSEGREHDRREICETSERZHA
L. FHIESBRICDOVNTEHBEY %,

-8 & D-EP) BKUBE/NY S — 2 (3D-EPL 3D
GRadient-And-Spin-Echo. 3D Arterial Spin Labeling) &
FBMIEDT ) r—3a>&REET 5,

ABTHEN I BT —4%IE. 3T MRI & MAGNETOM Vida &
ERL. VI7 o1 7/\—T 3 syngo.MR XA60 & LT
LIRS =7 VR T BLUEBRNTA V1 BBz #EA
LIcdDTHB, 2D TIA—-T5F—- A X=I>%J (2D-EPI).
3DIO— -5+ —+ A4 A—=TI>% (3D-EPI). 3D Arterial
Spin Labeling /3D GRadient-And-Spin-Echo (3D-ASL/3D-
GRASE) ¥—7VADBRICERZEHTTEY. ASL DENIE
I, BFZE B /Ny & — ¥ syngo.via Frontier MR Arterial
Spin Labeling (ASL) Perfusion Analysis' | Z{ER LT,

1FCsIT

IO— - To5F— c AA=TVIRRINATIAA=IVTIRE

DERA A—=D T HFE. RO —F7 I MCKYBHEHROA

TLIFVADEY - BINBEIO™AICHEEZITPTL., T

DESGATLYFVAE BmFOZES - BRFREOFEER

@”&@&5EIE$E’\JW1EL:ELT£U [1,2. 3T 7T DK
eI EE CXLUBEEENE LD,

BA LYV A0 Bfcsd, 22271 ELTHIS
NBHISHE— LT O XD TOoNS, CDIL—F UL A
TLVF VR ERIMET DI FICBOERITH LT BO
WHz st 95, YI071E. FIRRRRGREDT/LORIC
LOTHIREN. BREIGKRIETHIZRE ZFTEHT LI

HENTW3, LWL, Y209 %17oTChH. BERG—7>
ATl BFICER - BBREICE> (B EFRITNZRUVEFT
BEBEHFDIcDIC, KARELTATLY TV RADEEEZITP
I3

FICFRICEOTHERENABNGEA TLY F VAL #igE
DEEEHEELICEET THOTH, ERHICBERNTEHIS

ARBERSHEEZ—RERS [4]. INSDOABRENISERE

EHITERNICE L, HRICKOTREIEN D Hghe-PiEhE
DFFEDENE P, HRARDERICIREDE{LITER T 5,

o)Wy b IO— - FS5F— - A A=T VT (EPI) Tld.
HIBEEEDE(bIE. ELJWFEI/ZI FHHLL‘”otawt
IMIBDZEB G AL ZSE5T [4], HIT. RINAZIVA A—
IV TlE. TOXIEARBEIGEEMICELT BT LI
DIEH. WINDBELRRT/ A XDEBMZEEHE5T [2],
PDEBRFTIE. B 7 D—RNT—F 770 MaBERY
(TEHH5,

EPHRIEDHBE. MBI O—F (y) AADERY 7 MIA
ylp =~ A f Tacq LELITES, TITCL plEBEIRTAX, fI3F
WE T Tacq l&U— K7 MERBETRY, RINAT)VAA—
IVTDIBE. rlp DEEDKI2 A fTacg>1 (rIFHE) THD
LEIT. BEHALARSTEHOBEELRTAFO—THHES
MT/x %[5, BtERDORBFAMNAEZEICERT 28N
FTLYVFVRICHIGT BIcdblc, #aE%iFMESEEX
DREEINTERLN, 3,69], T5IC. BERUT M EEIET
Blz®lc. FES—2I0—DMEBREAVHIESLRE
TNTWA [2,10],

ATE EPI X—XD#E1&E MRI. functional - MRI (f-MRI) XU
LB MRI TlE. #RLERUBEMHARBINTWNDS, EHFE
EEICE. BEEA v X7 4+— KD Wellcome Center for

'MERT TV —aVBREREPTHY) KBS ST ZOMOETRRFENTOEEA SROAFTEMERETEET A,
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Integrative Neuroimaging 5 2 L T L% FSL @ TFUGUE]
. EEO> F> UCL Queen Square Institute of Neurology
HRBEL TS Functional Imaging Laboratory (FIL) @ SPM
lFieldMap toolbox) DEIGT4— LRy THRFICER TN
W5,

FSL @ FUGUE (&, EPI EIRDZEHEHIET BTHDBIEN T
YV—)bv b ELTHEBET B, RFICRIBEOZTER - B, =X -
HBRE COBIBARE—HICES f-MRI BRDEHICHEISY
%, INSDRE—MHIE. FHICHEEE TS S URIEEEESIC
BWT BAFNEEHEEBBERELEST, 7r—ILETY
TEAVWTRE—MaEEtL. RSNz —ILRELS
BAFNEHEESBEEHE TS, 7T—F 777 b 2R2IC
BRETRHTEETEGRVD, HERICTOBFBRHOALSNS,
COMIEIE. EPIBBROBMAZNEHEZL. DX MEHT
AF 7 EEALUESERICEPHEERS T BT EERT
BEDITHEEINT VD, BWETIHESBANEL BT
EET2TLETEGVNTEERBALTHLIENEETH S,
INSOBEIROESZEIE T BME—DEIE. BDERERMTA
FATRTETHS [3, 111

FIFRIT. SPM Y — )Ry I REBE@ (1] ICE>TT1—Ib
PRy THERTDRIIESNTND, EHEEDTZHICT
DHEZBRATHTET, EPI EIREEHZNERDEMAZH
BRNBEHLEIAE LETEHTENMETRIETNTLS [12],
Siemens Healthineers £ M syngo.MR ® @ D &ED 7 v 7
7— M. BOLD i B L UBRY — 7 Y A% BT 2D-EPI &/ —
4> A TStatic Field Correction] EWSFHEEENEA TNz,
= R7OMINVDIA—F—AVE—T1—RETZDAT
JAVEBRIRTBE. A VAV TRENTONS, Thid. &

DIKWEOREEDY 27 £ BO XY T DEHRIZE S+
NZHEEDZ—7 Y BB TORIVTEAETNIRHEDRS
ARICHETHEDTH B, TDEHRIE 2D BELU 3D EH+H
EDBIIBITHHIAEN., EPI DEHZIRE - HETBHIEN
TES[13,14], ZENICERGMABICEREREZ> 7 MEE
BIRIITHL WL PERBEDE(LZMET PIEEMHED
FENS,

THIT, ULFITRTHZER/NN YT —ITld, TDHZE%E 3D-EPI
R 3D-ASL D&S% 3D =7V AICHBEL T W3, TDHAE
IC&Y. BBESHEDN SHKIRLEWVRERS —7 >~ RICHER
TEBLSICHEY, 2D & 3D OMA TEHEEDHEITHF
TES,

BB DORIG—1ELEH

EPILU—R7 U MBI BEHDERIE. BB — ML EPI
YTV TRF— LORHBT Y A— KA EDHEIEORE I
5.

HM1iE U—=F77k RO) &UBTa—FK (PE) DM
ICBIFBEPI YTV TARERLTWS, T AV MEEN
fe k=BT TIVTIE EPI 7702 —H 5 DIFETHEIN
TEY. 1BIORETS5 ZAVHMBENZTLERLTNS
(A, ESICH YTV VTR F— LI EEG CRREN TS
(1B). RO EREISE LU PEERIEISEST BT TU>T
RAVIDRENTWVS, BYDSEN "R 1E. PEAED
YTV TD1 M vERL. ROV T VTICHENTY Y
TUVTBERBMAELIREN, TORFER. PEABDTFEIE

® PE m
RO K.
............... ﬁ
-------------- ‘"""""""‘ ; ;E) echo spacing echc?time
,\/\/\«\A ---.:f- -ji ------ T
--------------- e W wasn WY e on W sasn
° WA VU A W |
_____________________________ dwell time E
1 A A A A
--------------- - |

J—R7orAE (RO) MBI I—RAA (PE) OEAEICHIFTBHEPIY > T IAF— L (1A), DEIESNIkZBREY > T U F1E EPl 7702 —H5,
DEVEBIDFIHE TS5 T4 VHEEEN2H%RLTWS (1B), YTV I RF— LEBRES TESICKRET SE RO EPEDHEETST BT VT
TRAVIMRENTWS, BYUDRENTRY MEPEAADY > T THRL, H7)>J B (echo spacing) (EROH > 714 (dwell time) [Tkt
NTHEEITAEV, TR, PEAEOFEE (BandwidthinPhaseEncode. BWe) Id. RO HEIDFHIHIE (BWro) KUED UL, BE 1~ 21127455,

(Bandwidth In Phase Encode. BW,) I&. RO AmEDH1giE
(BWyw) KWEHLEIIECEY, BREIL 1~ 2 HEES,

ALz k DI, TNSDEHEMIET H5—2DHEE. £9
T4—IVER Y TEAVWTCENELEERtEAXEELTHTE
ThB, 71— IVRy T ETa7IVERIG N TIVTST T
IO — 7V ATEREBTED, COBDMIEICHEZHEXT
T4—IVLRyTOFEICIE. TZHIVY T MCBEELAMEER
{LEBENGMES Yy TEBEUICER T HZHENDH S [15-18],
TNE. MEER YT AOLSEE< Y 7. 5105 BO #is
ZHA BO EBVTEEINS ©

AB, [Hz] = A¢ / (2 ATE)

AT I—-FABEDERY TR y FRATEASNS :

Ay =0B,/BW,,

213, Ta—IVRFRvT (Hz) LfET>a—F (PE) AM
DEAM (mm) OEBBERERLTWVS, TOBERIIE
Bandwidth In Phase Encode (BW;) IC&K>TRETN. D
BITIER 3 DT —2H5 12 Hzlmm &75%, 3TITHITBMD
BFMEAZLYVF VA BIZEHEEPAEEREL) k. &
X100 Hz ITx% & HD, TNETRBBT BT, 71—

RA Tty b 48 Hz DRIV EEZTIH+D, Bl 48Hz
+ 12 HzImm T4 mm &35, By 71E 1 mm BRI TR
BitTh, FELLEMARTESHR TCREINS,

BW, DFt&EITIE. A E2—)—T# (27 A ML EPI DIHE)
& PAT DIIEGHHAEENS ¢

EchoSpacing
erleaves x PatFactor)

EffectiveEchoSpacing = (Numint

BW,, [Hz/mm] ~ (FOV x EffectiveEchoSpacing)™’

BWee DES—DDELKFEONDERIE. HzIPx DEMTEZS
N3, TTTIEAHRBA—/I\—H > T )T AR RO EREE.
BRUAMMEFRODEEREZERLTEEOR—7 v FEK
RV IRICEBETDRENSH D, TNUEIR TIELTBTE
HNCTES:

BW,, [Hz/Px] ~

(BaseRes x InterpolFactor x EffectiveEchoSpacing)’

30TV Ib 3y b EPLDOBITIE. BWy (& 1144 Hz/Px.
esp 1960 u s. PAT 77U%—I& 3. FOV & 256 mm, N—
ADHEREIE 208, WET 7752 —32 THS :

esp 960 us

EffectiveEchoSpacing = PAT 3

=320 us

BW,, [Hz/mm] ~ (256 mm x 320 ps)" = 12 Hz/mm

TARERD 77— TETO—BREIECORITEENT. BW,. O
WCTEEHRCHELEWTEISEETS, $fee —BNICER

EPIIC&513 50805 - k7 +

TEAIVY TR —=F T ME BEBI Y O—FARATIERNNCGES
M AT O— FARTIEAREGS MDD D, TOEVIE BWee
DIEILH D, EPI 7OV TIEER. BRADRESMEICH DR
EEHKDIEBICERDTEHEITBI-HICAEIES ZIFIT 5,

1 Auto @3 @ 0.6x0.6x1.3mm* = 1.00

Diff nline Sequence

Fat Water Shift: 54.64 Px

3.3 ppm DRERA - K> T M. EREEAITIE 407 Hz BTICHE WD) TH
%, EPIY—4 2D UIY—)LF v 7D TEcho Spacing] &, BgRh-7K> 7
hE PXBICRIRL. TIDSBW, Z5THIZIENTES !

Fat-Water Shift [Hz]
Fat-Water Shift [Px]

BW,, [Hz/Px] =

AN THRLIER3DY 7 )by3y FEPITOMVOFITIE Y —Ib
F v 714 54.64 Px DRERA- K> 7 FERL TS, CORER

BW,, [Hz/Px] ~ % = 7.4 HzlPx

BW,, [Hz/mm] ~

7.4 Hz/Px x 208 Px x =12 HzZ/mm

256 mm
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a~

N

o

N

IS

fe)

100 Ha s mm TN T3 2D-EPI 55 3D-EPI ICIE5R T B & 3D-EPI TD  ELEHRSNR ICDHEET B, EPI DEHDIEE (L. (%“td))
o0 zIVO—Fik. AV METHEGREN MTDONSSH. ITI—RkRE. 3’7’;1’3"5@*&%?% k ZBRIZ A HEDREDZE
60 MBI O—FAEO TEARL EHHCEEPREITIZUN, THEEITNEZNNCEOTDIHRES,
‘2‘2 Siemens Healthineers D> —4 > ADIHE. BWpk Luﬁﬁ?%‘lﬁ 2D-SE-EPI ) EPI| EHMBEDH

WIEVY 70775y b7+ — L syngo.MR Numaris 4 & ) B L
. Numaris X 0 DICOM % 4 (0019, 1028) & (0021, 1153) |2 SS‘E EIZD::)) T_“; f;;gii;g_‘i?;;%;; j?’
40 [Bandwidth Per Pixel Phase Encode] &ULY5 DICOM N\ & — A BLUE 3; " WjFEEI‘/:I— IZHF]%EJTJ ] ?; (A/j—l—;) 075"5
60 2T TNZTIREETNT NS, » S o

#%-71 (P-A IIREICEAIBEDEEZRLTHEY., TD

-80 FEHBEEPI FORIILD BWpe (HzImm) TREND LI, B EHOAALREL. DANBLESEEHIMEESED

[o2)

(o)}

EN

N

o

160 12 EHTRHBIDODRUTLLS ! BHIB(L, E£LZOMLESNS,
I 10 SV T OBBBLAREE. DEUFOVEX YT g i TwBESlc, AEENT A BO T4 —)b AT
120 i _ =
20 ST T BT I~ IO REROYY T EEEERTHIET, (AT
80 PAT BRI A Y B —U— T8 (A MEEPI DA), YO~ RBERORS VMR Y T EHETHIENTES, T
DT TERBLTEREBES 5L, M3C HKX0 3D IIRT

60 — . {IARES T — U TEFEAL, BT I—BELERLT f : o
40 o o £310, BBEIPHIEEL TS MPRAGE L& <—B(T 5, KUE
. b, EPCHIBEHAREERI T, EALGL, T8 D L

o MAIERET BT, ERCEFELS, 125 VPSP o T

-20

Standard imaging

N

2 74 VR T (Hz2) LAET>O—F (PE) AADZEA (mm) (FER 1 mm) OER% 2 DD S AME (FADAZA X (EB). EFDASAR (F
E®) e DWTR Y, COBHMRIZ12 HzZImm D BWpe [c KD TREE NS, LERDRX S A R BB ITRLIEEGRDSFSNHDTH B,

DAEYIA-RIT— - T5F— A A~
2% (2D-SE-EP) | H\F BRI EFHIE
(3A.3B), it > O—FAMA%H]-#% (A-P)
Do -7 (P-A) \REICEZSE, EHDF
EDRERT B, STEENRV VBT Y S
ZRIA T2 LT, BEIFHEZE MPRAGE
(3D) lTEWL KNEHDDEVER 30) %=
ER T BTENTES,

B1f&/\Z A—% : 2D-SE-EPI, FOV 256 X 256
mm2, 100 X571 A, BRE 0.62 X 0.62 X
1.3 mm? (interpolated). TE 81 ms, TR
18.4s. BWgo 1144 Hz/Px. esp 0.96 ms. BW
7.4 Hz/Px (12 HzImm). PAT 3. EF 70, TA1%
52 %

Standard imaging

n 2D-SE-EPIDZIRERY) 74— v NEHR, (4E) |3 FRBIF BB L 155 MPRAGE Elf§E T, 4L 2 Y DEIBISIKEE & PUBEEER (CSF) DIBROFRETRT,
4A.4B) |E IZENTIRIRICTE VT ZNZNEI-% (A-P) BEXTUE-71 (P-A) BT O— RABTHRESNEHBETN DEGREZ RL. EHHBEE THD,
LRAIZNER—HD B ZBENBESHCES (FEM), (4C, 4D) IR LT —4|C Static Field Correction ZEA LD T, BRBE(GE DI G5B RS
BEHREEINTNDZED DD D,

B/ N5 A—42 1’3 EFLC2D-SE-EPI 7 — 4,
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7ORVDREE. TEVANL—YavDleIcERHMIC
REBEHEBRFI BHEICKE TN TSI LITERLTIEL
W, BRBVBYIRERRR 7O b IV TIE. EHEEVNELGS,

X 4 (. [EIC 2D-SE-EPI 7 —Z2 D SEKIRE 7+ —< v LT
BEROEHEHMEDERETT, GRAIZEIIENBREGS
MPRAGE EH{&C. # LY DEmIZIKAEELMERER (CSF)
DEROERERT, EDFIE. TnZhEi-% (A-P) B&K
U#% -1 (P-A) MBIV I—FABRTHREINEHEEROE
BERL. EHDNBEECTHD, BIHFNHBHEEZENRDIIET.
BAZHNGAR—BONSLBEENESNMCED, FROFIE,
Static Field Correction @A LZERDEICL T —2%ZRLTH
Y, BREREOEBNZMBERHHEINTVSTELD
ANz

Standard imaging

3D-EPIY—4 VA THRIGEN T2 DDRS A AMTHE. BEDER (5A) & Static Field Correction (SFC) #1701 Eit§k (5B), th&E LT 2EMIC [EHD

3D XO— « F5F— « £ X—I% (3D-EPI) DI-&HD
Static Field Correction (SFC)

3D-EPI OO VINTA—E B, EIHIHTHREDES
FEERL. KVBRWGERGAIGEVEDEERLI., TF
VA= 3>DSHIT 12 Hzlmm ZER LIZEIOH &5t
BBBIT. BWre fED' 35 HzZImm EEOHICREIN TSR T ED
S5EBE5H TH B,

3D-EPI ¥ —T VA TIRBELIE2 DOWEZR 5 (TR g, &=
DEKRIETEZEOEER BGA) ZxL. 2FEHB & Static Field
Correction (SFO) ZfTofcEHR%ZRY (5B), LLEDI=&HIC,
KREMNIC TEHFDREW I IDIZYVIVIIOA—Y—T R A
=9 (50,

TSI, ERMNABENBICEITZEREHRT B
0.5 mm OEFESIFICKZZENMNT Yy THRY (5D), LEB (FER)
A4 ZAFEPHMAICEWLTE, BRIy Tid. bIhETh

3
3

4
3
2
1
0

-1

-2

-3

-4

W I3DYI VIV IO — VA% (50) TR, (5D) 1 0.5mm RO EFESIRIC LD mm BRIDOEM Y T Th D, COEM Y THh o, LEf GEE)
AFAREBMADERIERINTH BT EDNDD B, LH L. SEEEE, si5EE, BRI (FXM) TEBERICKEREZEULHS5NS,

B/ \Z X —4 :3D-EPI.FOV 256 X 256 mm2 112 51 A, 73f#HE0.62 X 0.62 X 1.3 mm?
(interpolated) . TE 23 ms, TR 58 ms. FA 10° BWRO 422Hz/Px. esp 2.62 ms. BWPE 21.2 Hz/Px

(34.5 HzImm) . PAT 2. EF 9. seg 12. TA 14320

24

ZRLTWA, LA L. SEOHEE. RBEROHEUTIE. K
UREMGY T MBESHTHS, TOrRIbITKY, 3D-EPI
=V ADEH, BTRERY T MECP T WVEEDEH
HEER S 5 LT, Static Field Correction MXIRMFRFH ST NIz,

3D-GRASE 354U 3D-Arterial Spin Labeling (ASL) @ SFC
3D-ASL DI —4 > A T&H% 3D-GRASE BIRICHE LT, ASL N
WA T LTz MO BfRODIZZEE R & Static Field Correction
EEELEESREZTNZENX 6 ITRT, 6Dk RCATAR
DFEEIFH MPRAGE Bl %9, 0.5 mm R TRRLIESH
EBRICKBEMT Y THOMADENILR/I R THBH. SiE
FEIRERIRTIIBEREMATEEND, 3 mm FHEDR
BEDTZ D ASL 7OV TlE. TO—REM@Ik 0.54 ms. BWpe
Bl 39 HzImm TH Y. WlEHEEZRIETCEDIREGRE. &

T HEREDESICEHS L. ASLIFEROEHICEE LI/
TA=ERTH B,

SFCZHEAYT AL, RERDEHDPRITRYT KDITEAICEE)
L. ZORR. EHDREIFNE BO] HAXITAD V.
Arterial Spin Labeling (ASL) EH{&<Cl&. 3D-GRASE —*47~
REBULAA=TI VI NTA—2%EFERL e, pseudo-
continuous ASL (pCASL) DSV TBEREE SN VT % DE
LRI ZNZ 1 1800ms & LTz, ® 7 I 3D-ASL DE1R%
Y

7M7C 7D TNZTNEREHR PW) BEHREMIR
(relCBF) EROFMHZTRL. 151BIE. BEOER. 2518
I3 SFC Z@IG L EGRZERL TS, BELELT 3FBIZRE
EIF#) MPRAGE B %Z R 7,

B sFCaiD3D-ASL Y —%> 2D 3D-GRASE Eiffk (MO Eif ASL SN > 2184 7) (68, 60) . FILR S RDAREIFH MPRAGE Eif5: (6D) . i< v 7
(0.5 mm DEER) (6A) It FENTOEMIFFLALES, BEEHLEROEMHE LN TERRLTUVS., SFC TR RROEHHNRENTRY
K3IBITEAIL. REFHT THO) I A KISE BTV S,

[B{5/ T A —74 . 3D-GRASE. FOV 256 X 256 mm?2,42 X 51 A, f#RE 1.5 X 1.5 X 3.0 mm? (interpolated) . PAT 2. TE 14 ms. TR 4100 ms. FA 90/160°,
BWRO 2380 Hz/Px. esp 0.54 ms, BWPE 58.8 Hz/Px (38.6 Hz/mm).TF 26, EF 15.seg 6.rep 1.TA 04328 #
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0.5 mm BROESMRICLBZEM< YT A TlE. BIEEHRE
BREIRICEZELRZEMIFS5N. BEABDEHEEMRHEABD
FEHELTEBICRN TS, SFCRIEZD PWI DIEESELER

9B. 9CI&. BiEEDIEFNEEZZTNTNRLTZBTEL
TW3, ®IDIE. HBRTAAICEWTREETEDFICIKE
BREEZEY 7y ELTGRIRL, relCBF BRICERTREDT

(78) £'5. SFC DHRHMEBREDZ(LELTRRTES.
TR YT & PWIBHLER Y T DZBHEMA LTV BT
EITEBLTIELLY,

%o

KIF SFCEROMMAREZTRL. REBEDIMDFFEETITH
T MeEIChaREENICEFH SN RBEO BB
hZEfTo1,

8

X 8 M 3D-ASL Efi&. AR~ v~ (relCBF) ZER&D
LD T. BEHFENXAE /A8 (GM/WM) OV A
DEN—EBZRLTWVS, Thid. [EETEREEDSVER
RSB HDMEFMOEMEZRL TS,

SFC#%. IXTDIRHEEMBEICH VT, relCBF DFEH(EILE
Z(TEmL. ZERENBD LI, TOHEIL. relBF Ty
EIRBBEEYIVOREIFHEREDOUBEGRHIRE NS
LITERTBEEZS5N D,

o o & AN O N A~ O

BAIFRRZ N 7 — DRI LT, REFRIMRAT. FICHREZ
W#EEDIKBEE BELI AV T—Yarv%&iTol. K9A

'
N

Standard imaging

Perfusion-weighted image

B 713140 3D-ASL GRASE &I &5 ASL B, BUIFH v 7 (relCBF) DA —/\— L 14, RBIFMKEE BE GMIWM) 37 M5 M EBNf—BER

LTW3,
R 7 LECEHR/ NG A —2,

GM statistics relCBF [mL/(100 g min)], mean = std

substructure right GM substructure left GM

° Standard with SFC Standard with SFC

g Total GM 33.1+13.4|33.3+13.3|33.3£13.2|33.5+13.0
% Occipital GM | 28.3+14.4|28.7 +14.0 | 28.2 = 14.1 | 28.6 = 13.9
“.é Parietal GM 34.7+13.0(34.9+129(33.9+13.5|34.1+13.4
§ Frontal GM 36.3+11.2(36.6+11.0|37.5+x11.5|37.7+11.3
g Temporal GM | 34.3+14.3|34.4+14.2131.9+14.0|32.1+13.8
£ Cerebellum GM| 22.9+9.6 | 23.1+£9.6 | 25.3+8.4 | 255+84

Table 1: Static Field Correction (SFC) 5B DI (relCBF) 8, Ik HE
(GM) ERDMAFEREATICHIL T, I2ERICh e 2 RS MITIFEE N
fe B D BENFRETRIT D TN fz, SFCOERA%K. INTDREE
FELITHUWT, relCBF OFMEILTBZE ML, IZEEREIRDL
feo T CBF RV T EIRBABEE Y LIVORSFHEREDEE M
DNWEINTLIGERTHEEZAS5NS,

71 # B 3D-ASL GRASE 31243 Arterial Spin Labeling (ASL) Eif&,
15, BEEOE(ER 258 1E SFCEEIG LIt BRE RLTWS, BE &L LT 35 BRI H MPRAGE Biff%Z R d, MR (PWI) B{REBKIR
(relCBF) Bif§ 7. 2N Zh (7C) 174 (7D) FTITRS, 0.5 mm BIRBDEE I CRUIEEM< v T (7A) I3, FIEERESIERICS L\ TROBEZHEMERL,
BABEDEHEEBHBDEH+ELTEERICENTWS, BEABEROEDER (BAI: %) TH.SFCERAVWEBREBEDERE T, E5REDEL
DENRIVCHEERTES (7B)

Bl 71 521D 3D-ASL GRASE I &5 ASLEfR
BAVERRZR/ Ny — D% ER LT EinikiE7 S XM AL REIE
BBEDIKAE,BELT AV T7—avhiThiiz. (9A.9B.90) I
BUEEICD 2 TN TORREENETE R ZNETNEGSETERR
LTW3,(9D) Ik, DR Z A RICH W E DRIk B BB

\ _ ) o Tt & LTRIR L. relCBF &I B - 60 TH 5.
96 EFILIRG/ $5 X —2 | PCASL DS AR (LD) 1800 ms. S5 DIRIERR (PLD)1800 ms. /w245 FillaY. 403 LEIS. g e

TA7 53 12%,
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3D-ASL Y —7 VRICSFCEBRAT 5T LT BEIFHBIE.
FRICAECY T LR T WVBIHIC BT B EHFDIRAITERL
feo TORER. relCBF v T EBBIZHEREDT ZA A2 b
HDREL. KBEEITAVT—aVOREEHALETEZIEN
3mm EAHBEEOTONIIVTRIEINT,

FEH

ERELT. COMX T, IO~ ToF— A A=IVY
DEIEERAA =TIV THEMCHEWVT, BIBOARE—EEE
HOE ST HFEEIRY Eif e, BEHEERTHHEITIE. &
VY. Ta—IVRRYTORIA, BAFHEHFEERMEE
Db B, syngo.MR B @ [T 8 1+ B TStatic Field Correction.
WEEDEA L. HHIEL2D-EPI > — 7V AETHTeh. T
T 3D TR — 7 Y AICHBIGL. EHFEOKREETFR
HERLTWA, 2D & 3D DY — TV RICHIFDEHDEER,
BlE@ELTEHAL. SFC DB ZRLTZ, E5IT. EPI 7O
JIVDEICK TS BWee DREEZRAN. BEICRKEZS5ZXS
BERZOIENICEIEE e, &&IC. 3D-ASLY—F 2 RICxL
TSFCHEL L IR v EV T DORELIKBE LT AV T7—
2avERWBEIL R—MERICE TS SFCOBEREZTRL
feo 2FELT. AMETIR. &% MR =72V RICHITS
EHHERMEZOBEBENDOXEICETHEEFRARICEIRL
TWa,

PAT & CAIPIRINHA %= B (N 72 3D-EPIFF 8 & — & > R &
Siemens Healthineers #£® JinJin & (7 —X S0 77) &4t
BHEEICEUBEHEINRL 9, 20], FESIX pseudo-
continuous arterial spin labeling (PCASL) A X—< >4k
IKDOVWTHAMEEZITWVL, EEGZERERDLTINTSE
Siemens Healthineers #£ @ Marta Vidorreta & (X X1 >/)
ITREEH T B0
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Table 1: Imaging parameters of conventional RESOLVE and SMS RESOLVE at our institution.
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