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Key takeaways
to understand DirectORGANS

Why a new autocontouring solution?
The quality of computer generated contours is significantly impacted by 
the input image quality, especially in the presence of artifacts, poor image 
statistics (i.e. increased noise), or poor contrast. All these factors can 
negatively impact relevant image features and may lead to suboptimal 
quality of the autocontouring [1] [2]. 

As a result, users spend a significant amount of time editing those organs-
at-risk (OAR) contours – sometimes to a point that the potential benefits 
of autocontouring in terms of time saving may be completely lost.

What is the benefit?
By leveraging Artificial Intelligence (AI) to generate OAR contouring directly 
at the CT simulator, DirectORGANS provides consistent, standardized,  
high quality, contoured images that are ready as an output of the CT 
simulation process. This solution enables time efficient OAR contouring as 
part of the standard CT acquisition, freeing up staff to spend more time for 
other tasks.

How does DirectORGANS work?
In order to solve the problem at hand, it is necessary to provide the 
autocontouring solution with optimized input. For this reason, 
DirectORGANS (Optimized Reconstruction based Generative Adversarial 
Networks) employs an optimized reconstruction that is used as a 
standardized input to the Deep Learning based autocontouring algorithm. 
Both processes, image optimization and automatic contouring, are 
embedded into the CT simulator enabling results as part of the image 
acquisition. 
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Importance of autocontouring

Each patient arriving at the RT department requires a treatment plan. Contouring the organs-at-risk is the necessary 
first step in the process of treatment planning after the CT acquisition. Therefore, the increase in the number of 
patients puts significant pressure on radiotherapy staff responsible for consistent OAR contouring results. Advances in 
technology and AI can help automate repetitive tasks such as OAR contouring and reduce workload. The automation 
may help in increasing consistency while achieving better efficiency.

Fig. 1.1 Cancer statistics and incidence predictions

Increase in cancer cases  
and their costs [4]

Percentage of cancer patients 
receiving radiation therapy [3]

Up to 2/3
of cancer patients  
receive radiation therapy.
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In the last couple of years, not only the cancer incidence rates have increased, but also the amount of patients 
receiving radiation therapy (RT). Up to two thirds of all the patients with cancer will need RT treatment during  
the course of their disease [3].
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Fig. 1.2 Opportunities in OAR contouring

DirectORGANS supports RT professionals addressing contouring  
needs and workflow efficiency

Challenges with OAR contouring 
In many institutions, organs-at-risk are contoured 
manually; as a result valuable staff resources are tied up, 
turning OAR contouring into a cost and time intensive 
task. In addition, inter-observer variability can make it 
difficult to achieve consistent contouring results and 
operators need to be trained on common contouring 
guidelines. Considering staffing issues such as high 
turnover, consistent OAR contouring still is a problem  
in many institutions.

In the last decade, various autocontouring solutions  
have been introduced to address these challenges.
However, the results may not be clinically useful for  
the RT professionals leading to significant editing or 
re-doing the contours. One of the reasons is that most 
autocontouring results have been produced on CT 
images optimized for human perception and may not  
be optimal for the task of automated contouring. 
However, the optimization of images is performed for  
a specific need in the clinic and introducing a new 
optimized reconstruction for the task of autocontouring 
may conflict with the original intent. 

To overcome the challenge of clinical workflow and 
simultaneously enable automated contouring we introduce 
DirectORGANS. DirectORGANS is the first integrated 
solution making OAR contouring a part of the acquisition 
task. The algorithm enables a fast and seamless workflow 
– not requiring manual data transfer, e.g. to a contouring 
workstation.  

Additionally, we also integrate the process of optimized 
image reconstruction for the task of autocontouring. 
Hence, in clinical routine, no adaption of the workflow  
is needed. Research shows that up to one hour can  
be saved for the contouring of the organs-at-risk [5].

up to  
1 hour/patient [5]
for OAR contouring

No interobserver  
variability

Potential for  
time savings
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The DirectORGANS algorithm

DirectORGANS was developed to provide contoured 
images directly at the CT simulator.  
Two core elements – optimized reconstruction and Deep 
Learning (DL) based contouring – lay the foundation for 
this technology.

One of the challenges of traditional autocontouring  
is the quality of the input images. Therefore, image 
optimization is a key step in order to provide consistent, 
high quality contours. Figure 2.1 illustrates the differences 
between an image optimized for the human and an 
image optimized for a machine: one of the keys to obtain 
consistent quality contours is to provide the algorithm 
with as much information as possible. Artifact reduction, 
higher spatial resolution are examples of ways to increase 
the amount of relevant information for the machine, 
however, increased spatial resolution leads to several 
challenges in the clinic. For example: increased z-resolution 
for the same coverage means increased workload for 
contouring and increased in-plane spatial resolution may 
lead to increased noise in the image – both features that 
are not desirable in the clinical situation.

Highest resolution

Thin slice

Smooth images

Standardized contrast High contrast 

Image designed for RT professionals

Fig. 2.1 Example of image designed for DirectORGANS (left) and RT professionals (right)

Image designed for DirectORGANS

Courtesy of Radiology Department, Hospital Particular de Viana do Castelo, Viana do Castelo, Portugal
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DirectORGANS is available for the most relevant cancer 
sites for External Beam Radiation Therapy (EBRT) such  
as brain, head & neck1, breast, lung, abdominal and 
prostate (figure 2.2). Additionally, we offer advanced  
packages for the heart and the lung. Cardiac 
substructure2 segmentation enables research in the field 
of cardiac toxicity. Contouring for the ribs and the lung 
substructures enables tailored treatment plans that 
minimize the risk of treatment-induced rib fractures [6]. 

Fig. 2.2 Examples of contours generated by DirectORGANS and DirectORGANS Advanced (Software Version VA30)

Head & Neck1 – e.g. 
Brainstem, Parotid Glands 

Brain – Whole Brain

Breast – e.g. Female Breast, 
Heart, Aorta3, Cardiac 
Chambers2,3 Lung – e.g. Lungs, Lung 

Lobes3, Ribs3

Abdomen –  
e.g. Liver, Spleen, Kidneys Pelvis –  

e.g. Rectum, Bladder

1 Atlas-based
2 MSL (marginal space learning) based
3 Optional, DirectORGANS Advanced
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a) DirectORGANS in clinical routine
The acquired data is reconstructed in two parallel tracks: 
One to meet the requirements of human operators, i.e. 
with the individually preferred reconstruction parameters 
(“Input for RT professional” arrow in figure 2.3). The other 
one to provide images that are optimized for 
autocontouring by the CT simulator (“Input for algorithm” 
arrow in figure 2.3). Images optimized for the task of 
autocontouring have the highest possible information 
with the highest resolution, standardized contrast and 

Fig. 2.3 Functional steps of the DirectORGANS algorithm 

minimized artifacts to enable consistent high-quality 
contours (see figure 2.1). Leveraging Deep Learning, the 
contours are generated based on the optimized images 
(orange arrow in figure 2.3). In the next step, the image 
designed for the RT professional and the contours are 
fused (figure 2.4). The resulting contoured image will be 
used for further treatment planning. The creation of the 
contours is explained in detail in the following.

Image for RT professional

Contours created by the 
DirectORGANS algorithm

Fig. 2.4 The contours created by the DirectORGANS algorithm and the image optimized for human consumption are combined.

Contoured  
image

Input for RT professional (images)

Input for algorithm (dedicated recon)

Metal artifact reduction
AI-powered Deep Learning  
contours trained by GANS

Optimized z-resolution

kV standardization

Streak artifact reduction

Optim
ized reconstruction

Output: consistent OAR contours

AI

Courtesy of Radiology Department, Hospital Particular de Viana do Castelo, Viana do Castelo, Portugal
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Optimized reconstruction (OR)
CT imaging is a highly accurate and quantitative imaging 
modality that allows to obtain precise information about 
the tissue density distribution of the patient within a  
few seconds of scanning. Nevertheless, there are sources  
of artifacts that make the images less quantitative than 
desired. That is the reason why an optimized 
reconstruction is performed in the background prior to 
the creation of the contours (figure 2.5). One element of 
the optimized reconstruction is reducing metal artifacts. 
These are caused by the presence of high density objects 
such as implants, seeds, or fillings. Furthermore, noise and 
streak artifacts, e.g. from beam hardening, are corrected. 

DirectORGANS uses a consistent slice thickness and  
slice increment for the optimized image reconstruction.  
kV standardization enables departments to leverage 
different kV settings for different patient sizes, ages and 
indications, while still generating consistent contours. 
That means DirectORGANS is capable of handling 
different scans independent of the selected kV. The 
optimized reconstruction of DirectORGANS enables  
an integrated way of generating images optimized for  
the contouring task without the need to change the 
existing workflow.

Optim
ized reconstruction

Fig. 2.5 Optimized reconstruction

AI

Metal artifact reduction

Optimized z-resolution

kV standardization

Streak artifact reduction

9

DirectORGANS  ·  White paper



Step 1: Locate  
target organ region

Step 2: Contour  
target organ

cropped image is used as input to create the contours. 
This step is based on a Deep Image-to-Image Network 
(DI2IN) [8]. The DI2IN was trained to its optimal 
performance in the Siemens Healthineers AI environment. 
The training process of the DI2IN is explained in the 
following section1.

Deep Learning based contouring
Following the reconstruction, the optimized images  
are used to create the contours (figure 2.6). This process 
is based on a two step approach as can be seen in figure 
2.7. First, the target organ region in the optimal input 
image is extracted using a Deep Reinforcement Learning 
trained network (DRL) [7]. The result is a cropped image 
with the target organ region. In the second step, the 

Fig. 2.7 Two step algorithm for DL based contouring

Input image Deep Reinforcement Learning [6] Cropped image

Segmented organDI2IN [7]Cropped image

Fig. 2.6 Deep Learning Contouring

Output: consistent OAR contours

AI

1 �Please note – the algorithm is not self-learning.  
Your data is not used for further training.

AI-powered Deep Learning  
contours trained by GANS
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b) Training of the  
DirectORGANS algorithm
The DirectORGANS algorithm was trained leveraging  
Deep Learning technology. Deep Learning uses a multi-
layer neural network that enables unsupervised learning 
for a specific task. Typically, the DL algorithm needs a 
large number of datasets to be trained.

To learn how to perform the organ segmentation, a  
Deep Image-to-Image Network is employed. It consists  
of a convolutional encoder-decoder architecture 
combined with a multi-level feature concatenation. An 
adversarial network – a so called Generative Adversarial 
Network (GAN) – is selectively used to regularize the 
training process of DI2IN by discriminating the prediction 
of the DI2IN from the ground truth (figure 2.8). The 
model is selected in the epoch with the best performance 
on the validation set. A GAN uses two networks that 
compete against each other during the training process. 
The first network – the generator – tries to emulate a  
human drawn contour while the second network –  

the discriminator – tries to discriminate the prediction of 
the first network from the ground truth (human drawn 
contour). The information is then fed back to the 
respective networks.This iterative process ensures that 
during the training of the networks, the machine 
generated contours become virtually indistinguishable 
from the human generated contours. For algorithm 
training, CT datasets were obtained for each body region 
from various radiation therapy and radiology departments 
in Europe and America. Ground-truth segmentations were 
manually generated on these CT datasets by a team of 
experienced annotators overseen by radiation oncologists 
or radiologists. For this process, a consistent annotation 
protocol was set up beforehand based on widely accepted 
consensus guidelines such as the ones published by the 
Radiation Therapy Oncology Group (RTOG). The organ 
models were then trained with pairs of CT data and the 
corresponding standardized ground-truth segmentation.

Fig.2.8 Adversarial training scheme

CT image Generator Prediction

Discriminator Human contour / 
Machine contour

Ground 
truth
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Clinical evaluation of DirectORGANS

Methods
DirectORGANS proposes to be a time-efficient OAR 
autocontouring solution providing consistent and  
high-quality contours. To assess the quality and  
clinical applicability, DirectORGANS was evaluated in 
collaboration with the Radiation Therapy Department  
of University Hospital Erlangen in Germany.

For the evaluation of DirectORGANS, a set of organs  
was selected to cover the most relevant cancer  
sites treated with EBRT:

•	Head & Neck
•	Breast
•	Thorax
•	Pelvis 
•	Abdomen

With the goal of evaluating time savings and clinical 
usability, three physicians or ‘human annotators’ 
manually contoured clinical images from 50 patients. 
These 50 patients were also automatically contoured 
using i) DirectORGANS, ii) an atlas-based solution from 
vendor A, and iii) a model-based solution from vendor B. 
Based on the number of patients, the number of OARs  
for each patient, and the different body regions, a total  
of 2,040 organs-at-risk structures were generated.  
Each resulting OAR was then evaluated by the three 
physicians in a blinded study barring their own  
manually drawn contour.

Step one – Evaluation of the quality (clinical usability)
A blinded setup was used to administer a ‘Turing test’  
to evaluate the quality of the contours. Each human 
annotator acted as a ‘reader’ and rated the quality of  
the organ contours generated by the other two human 
annotators and the three different autocontouring 
solutions.

The clinical usability of the OARs was rated by the  
readers using a 4-point scale to determine the  
quality of the contours. The 4-point scale is  
as follows:

4 – clinically usable,
3 – usable after minor edits,
2 – usable after major edits,
1 – must redo.

Additionally, the readers documented cases where 
organs were not available either as ‘contour missing’  
or as ‘whole patient case failed’.

Step two – Evaluation of time savings 
The time required for manual contouring of the  
different organs was captured for each ‘human 
annotator.’ This process allowed the use of manual 
contouring tools available in the contouring software 
used in the clinic, including interpolation. 

Manual edits and corrections were made to the 
automatically generated contours by the physicians  
to make them clinically acceptable. If OARs were  
missing, manual delineation was required using the 
available contouring software.

Total time to generate clinically usable contours  
was compared with the following: 

•	total time to adapt the contours generated 
by DirectORGANS,

•	total time to adapt the contours generated 
by contouring solution from Vendor A,

•	total time to adapt the contours generated  
by contouring solution from Vendor B,

•	and the mean time taken by the three human 
annotators for manual contouring.
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Results & discussion
The objective of the evaluation is to assess the  
clinical usability and the associated time savings  
of DirectORGANS. 

Figure 3.1 illustrates the quality of the contours for all 
the treatment sites. The study shows that about 80% 
of the cases generated by DirectORGANS and the 
physicians are clinically usable directly or with only  
minor edits, whereas it is about 40% for the solutions  
by vendor A and B.

When individual body sites were analyzed, the head  
and neck contours generated by DirectORGANS were 
rated lower than the physicians’ contours, potentially 
because they were atlas-based. For the remaining body 
regions, the physicians involved in evaluating the  
clinical usability were not able to distinguish between  
the physician-generated contours and DirectORGANS-
generated contours.

In the second part of the evaluation, the time required  
to generate the full set of clinically usable OARs was 
analyzed. Figure 3.2 shows the average contouring time 
per patient. The average time saved compared to the 
manual contouring is 11:24 minutes for DirectORGANS, 
5:01 minutes for vendor A, and 5:52 minutes for  
vendor B. 

With the consistent starting point (80% clinically usable 
contours), the use of DirectORGANS leads to significant 
time-savings compared to fully manual contouring. The 
time required to edit the contours from vendor A and B  
is substantially higher, partly due to missing OARs that 
required manual delineation. It is worth noting that the 
time-savings between different body regions vary based 
on the different numbers of OARs, different contouring 
tools available, and that smaller organs such as the 
kidney require less time than larger organs such as  
the lung.

Average contouring time per patient in minAverage rating of contours

Whole patient case failed

Physician rating

1 – Must redo
Contour missing

2 – Usable after major edits
3 – Usable after minor edits
4 – Clinically usable

Bl
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Manual 

contouring
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Figure 3.2  
Average contouring time per patient in min

Figure 3.1  
Average rating of contours
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DirectORGANS leverages the power of an optimized 
image reconstruction and deep learning to streamline 
OAR contouring directly at the CT simulator. This new 
solution may help to reduce unwarranted variations  
with contours that provide a consistent starting point  
for radiation therapy planning with 80% of the contours 
rated to be clinically usable without manual interaction 
or minor editing. By design, DirectORGANS enables a 
fully automated workflow requiring no additional 
workstation for the OAR contouring. 

The potential financial value of DirectORGANS:

This potentially leads to fewer errors originating from  
the application configuration or operation. As a result, 
on average it saves between 11–12 minutes for cases 
processed at the University Hospital in Erlangen. 
However, these times depend on several factors, such  
as the number of OARs used in the clinic, and clinical 
definitions for each OAR, and are highly dependent on 
the personnel involved. The results from DirectORGANS 
are inde-pendent of the user and hence provide 
mconsistent results. With DirectORGANS, OAR contouring 
becomes an integrated part of the standard CT acquisition.

Conclusion

Examples of time savings1 Average time savings

Ø11.4 min

89.7  
working days

Based on an  
assumption of:

•	Spend more time  
with patients

•	Reduce over hours
•	Invest in education

•	252 working days  
per year2

•	15 patients per day
•	11.4 minutes saved  

on average per case

Potential time savings

Manual OAR contouring
Average time spent:  
16.1 min / clinical site

DirectORGANS (incl. review)
Average time spent:  
4.7 min / clinical site

 
16.1 min 

 
4.7 min

1 Clinical data provided by Erlangen University Hospital 
2 http://www.joursouvres.de/en/joursouvres_joursferies_2020. 
The statements by Siemens Healthineers’ customers described herein are based on results that were achieved in the customer’s unique setting. Since 
there is no “typical” hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other 
customers will achieve the same results
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