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Diffusion MRI has established itself as a very powerful  
tool to detect and quantify cellular changes in tissue. The 
diffusion-weighted signal is sensitized to the random  
displacement of water molecules in the tissue. The mean 
squared displacement is on the order of a few microns to 
tens of microns and is largely dependent on the restrictions 
and hindrances encountered by the water molecules in the  
tissue, in the form of cell membranes or other obstacles. 
Diffusion MRI can thus inform about tissue microstructure 
features that are far below the image spatial resolution – 
typically still 1.5 to 2.5 mm isotropic voxel size on clinical 
MRI systems.

Notably, since the late 1980s, diffusion MRI has been 
the method of choice for the diagnosis of acute stroke  
[1]. The dramatic drop in apparent diffusion coefficient 
(ADC) happening within minutes of the stroke onset is  
a better feature than, e.g., the increase in T2 that only  
occurs ~24 hours later [2]. Another clinical success story 
for diffusion MRI is the use of tractography in surgical  
or radiotherapy treatment planning [3, 4]. Tractography 
enables the reconstruction of white matter fibers based  
on the principal direction(s) of diffusion in each voxel.  
The underlying assumption is that diffusion along axons  
is much faster than perpendicular to axons, where water 
molecules are highly slowed down by axon membranes, 
myelin sheaths, and a highly tortuous extracellular space. 

To account for diffusion anisotropy across the brain or 
other organs, the formalism of diffusion tensor imaging 
(DTI) was introduced early on [5]. The diffusion tensor en-
ables reconstruction of the ADC in any arbitrary direction 
of space. Four scalar metrics are typically derived from  
the tensor: mean diffusivity (MD), fractional anisotropy 
(FA), axial diffusivity (AD), and radial diffusivity (RD). MD 
represents the average ADC across all directions of space. 
AD represents the diffusivity along the fastest direction of 
diffusion (e.g., along the white matter bundle), and RD 
represents the diffusivity in the radial/perpendicular plane 
to that. Metrics such as MD and FA have become extremely 
useful in the evaluation/diagnosis of many normal and 

pathological conditions in the brain. Outside the brain, 
trace-weighted images (effectively, MD) are part of clinical 
protocols in the liver [6–8], prostate [9], breast [10, 11], 
etc. The clinical value of DTI is so overwhelming that it has 
become a common shortcut to consider “diffusion MRI” 
and “DTI” as synonyms.

Here, we want to argue that the field of diffusion MRI 
(dMRI) is much richer than DTI, and to encourage the  
clinical translation and widespread adoption of more ad-
vanced dMRI protocols that enable data analysis beyond 
the diffusion tensor. The compatibility of protocols with 
the clinic is largely driven by scan time and by feasibility 
across scanners and imaging centers. Recent technological 
advances now enable the acquisition of more comprehen-
sive dMRI data than DTI in a clinically feasible scan time  
(< 10 min) [12]. These advances concern MRI scanner 
hardware and notably stronger gradients, acquisition  
acceleration techniques such as GRAPPA [13] or multiband 
[14], and processing strategies that boost data quality, 
such as denoising [15, 16].

What is the advantage of acquiring richer data than  
is needed for the DTI estimation? And what is meant by  
“richer data”? DTI assumes that the diffusion signature  
in any voxel can be modeled as an ellipsoid. This is com-
monly referred to as the “Gaussian Phase Approximation”, 
which holds up to a moderate diffusion weighting of  
b ~1000 s/mm2 in vivo1 (Fig. 1). However, biological tissue 
contained in a voxel is in fact complex and heterogeneous. 
There is significant value in retrieving specific information 
about features such as cellular density, morphology,  
characteristic sizes, myelination, etc. This is the challenge 
that the field of microstructural MRI has taken on, with  
remarkable progress and success stories over the past  
few years [12, 17–19].

1  Please note that the Gaussian Phase Approximation does not imply isotropy. 
A medium can be Gaussian anisotropic.
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Beyond DTI: Diffusion kurtosis imaging
Firstly, sensitivity to tissue complexity and heterogeneity 
can already be gleaned from the behavior of the diffusion- 
weighted signal beyond the Gaussian Phase Approxima-
tion, i.e., for b-values > 1000 s/mm2. This heterogeneity  
is measured by the “kurtosis” (Fig. 1). Diffusion Kurtosis  
Imaging (DKI) is thus a clinically feasible extension of DTI 
that estimates the kurtosis tensor jointly with the diffusion 
tensor [21]. Summary metrics derived from the kurtosis 
tensor are mean, axial, and radial kurtosis (MK, AK, RK). 
Qualitatively, high kurtosis suggests high diffusion hetero-
geneity in the voxel, or microstructural complexity. For  
example, radial kurtosis is high in aligned white matter  
fiber bundles, due to the two very different water popula-
tions – highly restricted in the intra-axonal space and  
more mobile in the extra-axonal space. Demyelination,  
axonal loss, or membrane permeation will reduce kurtosis. 
Inflammation on the other hand can increase kurtosis due 
to increased cellularity [20]. While diffusivity and kurtosis 
typically change in opposite directions with physiological 

and pathological processes (i.e., kurtosis decreases when 
diffusivity increases), numerous studies have shown DKI to 
provide complementary information to DTI about tissue  
microstructure. For example, in voxel-based or ROI-based 
analyses, kurtosis metrics can identify differences between 
patients and controls in brain regions where DTI metrics do 
not (Fig. 2). DKI is thus used to improve the detection of 
brain changes during, for instance, development [22, 23], 
aging [24], early psychosis and schizophrenia [25–27], 
cognitive impairment and Alzheimer’s disease [28], multi-
ple sclerosis [29], glioma [30], stroke [31, 32], traumatic 
brain injury [33, 34], and prostate and other body applica-
tions [35]. While DTI estimation can be done using typically 
~30 directions of a single non-zero b-value referred to as  
a “shell” (usually b = 1000 s/mm2), two non-zero shells are 
needed for DKI estimation. A typical DKI protocol would 
thus include an additional b = 2000–2500 s/mm2 shell  
with ~30 directions. It is critical that the entire protocol  
(b = 0, 1000, 2000) is set up as a single scan, such that the 
echo time (TE) is consistent across all diffusion-weighted 
images. Data compatible with the DKI estimation can  

1   (1A) In a free homogeneous medium, such as cerebrospinal fluid (black box in (1C)), the displacement probability follows a Gaussian  
shape, whereby the diffusion process is referred to as Gaussian. (1B) In biological tissue, such as brain white matter (petrol box in (1C)),  
the displacement probability is no longer Gaussian; it is more peaked (positive kurtosis). (1D) The diffusion-weighted MRI signal (petrol)  
can be approximated as Gaussian (orange solid line, DTI) only up to a low b-value (~1 ms/μm2 or 1000 s/mm2, orange dashed vertical line),  
after which it deviates from a linear pattern and can be described by a quadratic function (gray solid line, DKI) up to moderate b-value  
(~2.5 ms/μm2 or 2500 s/mm2, gray dashed vertical line). Corresponding parametric maps are shown in (1E) for DTI and (1F) for DKI  
metrics of a 33-year-old female. Diffusivities scale bar: [0 3] μm2/ms, FA [0 1], and kurtosis [0 3]. Figure adapted from [20], with permission. 
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currently be acquired in a scan time of 6–7 minutes, at a 
resolution of 2 mm isotropic.

The availability of two-shell (or even better, multi-
shell) dMRI data really boosts the number of analyses that 
the data are suitable for, as compared to single-shell. Aside 
from enabling DKI estimation, two or more shells also  
improve the estimation of the orientation distribution func-
tion (ODF) at every voxel, in order to refine tractography 
reconstructions [36, 37] and especially to make the data 
suitable for estimating biophysical models of diffusion, 
which are at the heart of microstructural MRI.

Indeed, the metrics provided by DTI and DKI analyses –  
MD, FA, and MK – are sensitive to physiological and patho-
logical processes, but they lack specificity in the sense  
that various processes can yield the same signature in 
terms of these diffusion metrics. For example, a decrease 
in FA in white matter can be caused by mechanisms as  
varied as demyelination, axonal loss, microgliosis, etc. [38]. 
To retrieve specificity, biophysical models of diffusion in a 
given tissue type are introduced.

Brain white matter
The most popular and studied model is certainly the two- 
or three-compartment model of diffusion in white matter 
(Fig. 3). Here, one compartment represents the collection 
of axons, and the second compartment represents the  
extra-axonal space. The two-compartment model of  
diffusion in white matter thus captures five parameters  
[f, Di,∥, De,∥, De,⊥, p2], which can all be estimated inde-
pendently using a two-shell acquisition similar to the DKI 
scheme. Each one has its own microstructural relevance 
and improves the specific characterization of white matter 
pathology, as summarized in Figure 3 and supported  
by several preclinical and human validation studies  
[20, 39–44]. 

A third compartment can sometimes be used to  
capture the cerebrospinal fluid (CSF) partial volume as a 
sixth parameter, with the additional fiso for CSF fraction. 
However, recent evidence suggests that estimating the 

3   The Standard Model of diffusion in white matter. Axons are modeled as a collection of infinitely long sticks (cylinders with zero radius),  
where diffusion is unidirectional with diffusivity Di,∥. They occupy a relative voxel water fraction f and their orientation distribution function 
(ODF) can be parametrized using an expansion in spherical harmonic coefficients; in practice, only the first coefficient p2 is usually  
estimated, which gives a measurement of orientation dispersion (ranging between p2 = 0 for isotropically distributed axons and p2 = 1 for 
perfectly aligned axons). Extra-axonal water is modeled as a Gaussian anisotropic medium with diffusivities De,∥ and De,⊥ in the parallel and 
perpendicular directions, respectively. A third possible compartment is CSF, which is modeled as a Gaussian isotropic medium with fixed 
diffusivity Diso = 3 μm2/ms (the diffusivity of free water at body temperature), occupying a relative voxel water fraction fiso. In this case, the 
fractions are normalized such that they add up to 1: Stot = (1 – fiso )(f∙Sintra + (1 – f) ∙Sextra ) + fiso ∙ SCSF.
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patients (Aβ+) for FA, RD, and RK. Significantly reduced RK in Aβ+ 
as compared to Aβi is more widespread in the brain than reduced 
FA or increased RD. Figure adapted from [28], with permission.
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three-compartment model requires data beyond single-TE 
and linear diffusion encoding schemes to be robust [45].

We thus consider the two-compartment model of 
white matter to be compatible with clinical protocols. The 
estimation of the five parameters requires at least two 
shells with b-values (1000/2000) s/mm2 sampled across at 
least 30 directions. Several implementations of this model 
have been proposed over the years using various acro-
nyms, including NODDI [46], WMTI [47], WMTI-Watson 
[48, 49], and CHARMED [50]. However, they can all  
be unified under a Standard Model [51], which can be  
estimated using a choice of publicly available software 
tools: [45, 48] (Fig. 4). Importantly, these recommended 
implementations of the Standard Model estimation do not 
fix any parameters to arbitrary values to stabilize the fit. 
This maintains a high specificity of each parameter to its 
biological description. Indeed, pathology can, for example, 
alter compartment diffusivities (e.g., De,∥ decreases due to 
axonal injury [52]), an effect which can only be captured if 
De,∥ is a free model parameter. If it is fixed to an arbitrary 
value, the pathological change will be incorrectly absorbed 
by another parameter of the model [53].

The value of white matter microstructure characteriza-
tion using the Standard Model vs. DTI has been demon-
strated in several studies of clinical populations, and  
notably at early stages of change, such as in mild cognitive 
impairment, early psychosis, acute ischemia, multiple  
sclerosis, and early brain development [27, 28, 54]. For  
example, the Standard Model reveals mainly a decrease  

in axonal water fraction and an increase in extra-axonal  
diffusivities in early psychosis compared to controls, point-
ing to an extra-axonal-initiated pathology possibly with 
myelin damage [27]. The model reveals a decrease in  
axonal water fraction and in intra-axonal diffusivity in  
cognitive impairment, pointing to an intra-axonal-initiated 
pathology [28, 52]. Unfortunately, the model cannot be 
applied retrospectively to single-shell clinical data, despite 
what some implementations suggest [55]. Its broader  
use thus warrants a change in default diffusion clinical  
protocol from the single-shell DTI to two or three shells.  
We underline once more that the cost in scan time remains 
very moderate thanks to acceleration techniques, and is 
superseded by the benefits of a more refined white matter 
characterization. 

Brain gray matter
Modeling diffusion in gray matter is more challenging than 
in white matter: The limited myelination does not guaran-
tee that water will stay within the same compartment  
over typical clinical diffusion times (Δ > 20 ms) and thus 
inter-compartment water exchange must be modeled.  
A recent model suitable for cortical gray matter has been  
proposed: Neurite EXchange Imaging (NEXI)2. It has been 
successfully demonstrated and validated, first on preclini-
cal MRI systems [56, 57], then on Connectom scanners 
from Siemens Healthineers [58, 59] and recently also on a 
3T MAGNETOM Prisma system from Siemens Healthineers 

4   (4A) The WMTI-Watson implementation of the Standard Model can be estimated directly from a DKI fit using, for example, a deep-learning 
implementation in [48] available at https://github.com/Mic-map/WMTI-Watson_DL. (4B) The Standard Model Imaging (SMI) toolbox is suitable 
for both classical DKI data (2 shells, bmax up to 2500 s/mm2) as in (4A) or richer data such as multi-shell up to bmax = 10,000 s/mm2 and/or 
combinations of measurements using linear and spherical diffusion encoding or multi-TE [45]. The toolbox is available at https://github.com/
NYU-DiffusionMRI/SMI. SMI maps adapted from [45], with permission.
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[60, 61] (Fig. 5). Briefly, NEXI is a two-compartment model 
that disentangles contributions from intra-neurite water 
and extra-neurite water and estimates the exchange time 
tex across the cellular membrane. Accounting for the ex-
change enables a more accurate estimation of neurite  
density (which would be otherwise underestimated), while 
the measurement of the exchange time itself is a relevant 
proxy for cell membrane integrity and gray matter myelin-
ation [56, 62]. The biomarker value of NEXI parameters  
remains to be thoroughly validated, though initial preclini-
cal and clinical studies are encouraging [56, 60, 63]. 

However, the estimation of NEXI model parameters  
requires a diffusion protocol that can only be set up using 
research applications. Indeed, it requires sampling both  
dimensions of (q, t) space independently, as opposed to 
aggregated within the b-value.3 In other words, the diffu-
sion time t needs to be controlled directly in the sequence 
card, an option which is currently not available in the diffu-
sion product sequences from Siemens Healthineers. NEXI is  
for now mainly suitable for research protocols, but it holds 

great promise for characterizing gray matter pathology  
in patient cohorts. This model could be extended to also 
account for cell bodies, which are more abundant in gray 
than white matter, but the feasibility of estimating all  
model parameters reliably is under investigation [57].

Beyond the brain: tumors, prostate, muscle
Moving away from the brain, biophysical models of  
diffusion MRI have been developed for other tissue types 
and organs. However, to unleash the potential of micro-
structural MRI for non-brain applications, advanced dMRI 
protocols also must be established prospectively. 

Certainly, the reliable estimation of diffusion models 
outside the brain also requires data acquisition beyond 
what is typically feasible with the diffusion product se-
quence. Protocols need to span multiple diffusion times, 
and often also beyond the pulsed-gradient spin-echo 
(PGSE) scheme, using either OGSE (Oscillating-Gradient 
Spin-Echo)4 [64] or STEAM (Stimulated Echo)4 [65].  

2 Siemens Healthineers Disclaimer: This article describes possible future ideas and concepts. It is not intended to describe specific performance and/or safety  
characteristics of currently planned or future products. Future realization and availability cannot be guaranteed. 

3 For the pulsed-gradient spin-echo (PGSE) diffusion weighting, and in the narrow pulse approximation: b = (γGδ)2 (Δ - δ/3) = q2t, where q is the spatial phase warp  
and t is the diffusion time.

4 The product is still under development and not commercially available. Its future availability cannot be ensured.

5   (5A): NEXI is a two-compartment model capturing four parameters: the intra-neurite water fraction f, the intra-neurite diffusivity Di (where 
neurites are modeled as infinitely long sticks, randomly oriented), the extra-cellular diffusivity De, assumed isotropic, and the water exchange 
time tex between the intracellular and extracellular compartments. (5B): Example NEXI maps in the human brain. Adapted from [59], with 
permission. NEXI can be estimated using publicly available code: https://github.com/Mic-map/nexi.
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Compared to PGSE, OGSE and STEAM acquisitions give  
access to diffusion times that are much shorter or longer, 
respectively. These diffusion encoding schemes are avail-
able as part of research protocols. Beyond linear diffusion  
encoding (i.e., sensitizing the signal to diffusion along one 
specific direction at a time), diffusion gradient waveforms 
tailored to enable multi-dimensional diffusion encoding 
are sometimes also required [66]. They are available 
through C2P (https://github.com/filip-szczepankiewicz/ 
fwf_seq_resources/tree/master/Siemens).

Tumors are a perfect application for microstructural 
MRI. Their heterogeneity is difficult to capture with DTI 
metrics alone. Usually, the tumor environment is modelled 
as impermeable spheres of a given radius within an extra-
cellular space. Cell size can then be estimated through 
varying diffusion times, using PGSE or a combination of 
PGSE and OGSE measurements, depending on the time 
range that needs to be sampled. Two common models  
are IMPULSED (Imaging Microstructural Parameters Using  
Limited Spectrally Edited Diffusion) [67] and POMACE 
(Pulsed and Oscillating gradient MRI for Assessment of Cell 
size and Extracellular space) [68]. Several clinical studies 
have successfully exploited diffusion time-dependence to 
characterize glioma [69, 70] or prostate cancer [71]. 
Using multi-dimensional diffusion encoding, it is possible 
to also probe the shapes of the cells that constitute the  
tumor. Consider a voxel of spherical cell bodies vs. a voxel 
of isotropically oriented neurites. Both scenarios would 
yield similar diffusion signatures in single diffusion encod-

ing (PGSE or OGSE) methods – e.g., a very low FA in both 
cases. Multi-dimensional diffusion encoding enables  
separating these two cases by extracting the “microscopic 
FA” (μFA), which would be very low for spherical cells  
and very high for neurites and astrocytic processes (Fig. 6).  
One approach to multiple diffusion encoding is q-space  
trajectory imaging, or diffusion tensor (b-tensor) encoding, 
which consists in using time-varying (“free”) diffusion  
gradient waveforms to probe multiple directions at once 
[73, 74]. One of its most successful applications was in dis-
criminating between various types of tumors characterized 
by different cell geometries [72, 75, 76] (Fig. 6). It has  
also been used to assess kidney microstructure [77] and  
to improve the estimation of the Standard Model of white 
matter [45]. 

The reader is referred to dedicated reviews on tumor 
microstructure characterization [76, 78, 79].

In the case of prostate microstructure, the model  
accounts for a densely packed cellular compartment  
(composed of stroma and epithelium), for which the fiber 
diameter and membrane permeability can be estimated  
using the random permeable barrier model (RPBM), and  
a luminal compartment with almost unrestricted water  
diffusion, for which the average lumen diameter can be  
estimated. The model therefore requires an acquisition 
where the diffusion time is varied using a STEAM scheme, 
and the echo time TE is also varied to separate water pools 
with different T2s [80]. This model has been successfully 
applied to the characterization of healthy and cancerous 

6   A meningioma (top row) and glioblastoma (bottom row) display similar contrast on T1w images and low FA. However, the μFA estimated from 
a combined acquisition of linear and spherical diffusion encoding is high in the meningioma and low in the glioblastoma. This is due to their 
underlying most abundant microstructure (sketched in the right-hand column). Figure adapted from [86], with permission.
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prostate [81] with the potential of eventually foregoing the 
need for invasive biopsies.

Finally, time-dependent diffusion MRI also serves  
microstructural quantification of skeletal muscle. The RPBM 
model has been applied to estimate myofiber diameter 
changes due to injury-related atrophy and subsequent  
recovery [82]. Recently, clinical applications of time- 
dependent diffusion to Duchenne muscular dystrophy  
have also been performed [83].

Conclusion and future directions
The diffusion MRI signal contains very valuable information 
about tissue microstructure, and the regime that goes  
beyond the Gaussian Phase Approximation and DTI enables 
a more refined and specific characterization of cellular- 
level features. It is worthwhile acquiring multi-shell data 
routinely in clinical practice to improve sensitivity and  
specificity to pathology. We also encourage the widespread 
adoption of more advanced research protocols, which  
may include varying the diffusion time and/or the dimen-
sionality of diffusion encoding, and which are particularly 
useful for brain gray matter and body imaging. A commu-
nity-wide reflection on how to best integrate quantitative 
microstructure maps into the clinical workflow is much 
needed for radiologists and clinicians to make use of the 
available information. For example, normative databases 
for diffusion microstructure parameters like the ones  
developed for relaxometry [84] are currently in develop-
ment [85]. They would enable evaluating the extent of  
alterations on a patient-by-patient basis.
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