Thyroid diseases in cats and dogs Anno 2023

Sylvie Daminet
PhD, DACVIM, DECVIM-CA
Ghent University
Belgium

376

SECTION V Endocrinology

FIGURE 34-3 Depiction of follicular cell showing steps in the synthesis and release of triiodothyronine (T_3) and thyronine (T_4) . The numbers identify the major steps: 1, trapping of iodide; 2, oxidation of iodide; 3, exocytosis of thyroglobulin; 4, iodination of thyroglobulin; 5, coupling of iodotyrosines; 6, endocytosis of thyroglobulin; 7, hydrolysis of thyroglobulin; 8, release of T_3 and T_4 ; 9, deiodination of monoiodotyrosine (MIT) and diiodotyrosine (DIT); and 10, recycling of iodide. TBG, Thyroxine-binding globulin; TP, thyroperoxidase. (From Hedge GA, Colby HD, Goodman RL: Clinical endocrine physiology, Philadelphia, 1987, Saunders.)

Cunningham Veterinary Physiology

Increased liver enzymes
Palpable cervical nodule(s)
Tachycardic
Systolic heartmurmur

Increased T4

Hyperactive, PU/PD, weight loss

Senior cats with weight loss Mean age 13 years (6-25)

INICALI age to years (0-20)

PUPD, polyphagia

Vomiting Diarrhea

DIGITIES

Acute blindness

Palpable cervical nodule

Tachycardia Heart murmur

Tachypnea, panting

Increased liver enzymes

CKD frequent

Behavioral changes

Cervical palpation

90 % have palpable nodule(s)

70 % bilateral

20 % ectopic (neck or thorax)

Muis, DSH, 10 years, 4,9 kg

- Obesity (BCS 7/9)
- Weight loss noticed by ref. vet. during annual health check (200 g)
- Small thyroid nodule
- TT4 3,7 (0,8-3,5) μg/dl
- TT4 47 (10,3-45) nmol/L
- Is this patient hyperthyroid?

Palpation is reliable

The larger the nodule, the higher the chance to be hyperthyroid

If nodule ≤ 3 and many clinical signs

→ probably ectopic

Also important in follow-up of treated cats

A euthyroid cat with a small nodule has an increased chance of becoming hyperthyroid

Boretti et al., 2009; Paepe et al., 2008

Peterson et al., 2001

Thyroid tests available

- - FT4

TT4

- cTSH
- Scintigraphy

Original Article

Concurrent diseases in hyperthyroid cats undergoing assessment prior to radioiodine treatment

Journal of Feline Medicine and Surgery 2015, Vol. 17(6) 537–542 © ISFM and AAFP 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1098612X14551775 jfms.com

Jordi Puig¹, Isabelle Cattin² and Mayank Seth¹

Abstract

Hyperthyroidisr retrospective st for radioiodine cats were inclualimentary lympeosinophil cour the differences for all hyperthyr

Non azotemic hyperT4 cats referred for I131
Thought to be otherwise healthy by referring vet
18% concurrent disease!
Especially GI lymphoma and IBD
Need for careful and individual assessement prior to I131

This rred four with The bugh

Hyperthyroid cats with lethargy and hyporexia

Tikiwi, 17 years, 1,6 kg, BCS 2/9

Hyperthyroid cat treated for 4 years
Fixed cervical mass
Anorexia and regurgitation

Mass 5x4 cm (also cyst)

! Renal function

! Under-treatment

! Over-treatment

Iatrogenic Hypothyroidism

Stabilize before!

Monitoring

TABLE 14.5. Monitoring of hyperthyroid cats treated with antithyroid drugs. **x**: recommended; **x**: optional; —: if adverse event suspected or if inadequate resolution of clinical signs.

	Pre-treatment	2 to 3 weeks after the start of antithyroid drugs First check	1 month later (if euthyroid at previous test)*	3 months later (if euthyroid at previous test)*	Every 6 months (once stable)
History	××	××	××	××	××
Physical examination	××	××	××	××	××
Body weight, muscle and body condition score	××	××	××	××	××
Total T ₄	××	××	×	××	××
Complete blood count (CBC)	××	_	_	-	-
Full biochemistry profile	××	_	_	-	-
Liver profile	××	×	×	×	×
Renal profile	××	××	××	××	××
Urinalysis (USG, dipstick, sediment, culture)	××				
Blood pressure (ideally, and/or ophthalmic examination	××	××	××	××	××

^{*} If not euthyroid, then the dose of antithyroid drugs should be adjusted and the T_4 checked every 3 weeks until the target value (T_4 concentration in half of reference interval) is reached.

Daminet et al 2014, 2019

Hyperthyroidism and CKD

Renal function in hyperthyroidism

- Hyperthyroidism
 - 1) \uparrow GFR $\rightarrow \downarrow$ Cr \rightarrow Cr under estimated
 - 2) Muscular mass $\downarrow \rightarrow$ Cr under estimated
 - 3) Impaired conversion creatine to creatinine → Cr under estimated
- Treatment of hyperthyroidism → 'normalisation' of RBF, GFR and therefore Cr (↑)
 - Often without consequences ...
 - Sometimes CKD is 'unmasked'
 - If already azotemic → worsens

Hyperthyroidism WITH azotemia 2 different scenarios

Initially	Prognosis	Treatment	Remark
Both are present when diagnosis of hyperT4 is made	Guarded	CKD IRIS guidelines Try treating hyperT4 with reversible treatment	Assess global effect on the cat Monitor (weight, creatinine, BP, etc)
Mild post-treatment azotemia	Unchanged	Hyperthyroidism: yes ! CKD IRIS guidelines	Usually mild azotemia (IRIS 2) Avoid iatrogenic hypothyroidism Do not decrease therapy to restore normal creatinine

Prognosis?

When to monitor?

When to intervene for IH?

SDMA in hyperthyroidism?

Assessment of symmetric dimethylarginine as a biomarker of renal function in hyperthyroid cats treated with radioiodine

```
Eva Buresova<sup>1</sup> | Emmelie Stock<sup>2</sup> | Dominique Paepe<sup>1</sup> | Lisa Stammeleer<sup>1</sup> |
Eva Vandermeulen<sup>2</sup> | Pascale Smets<sup>1</sup> | Luc Duchateau<sup>3</sup> | Herve P. Lefebvre<sup>4</sup> |
Sylvie Daminet<sup>1</sup>
```

- n=47 non azotemic hyperthyroid cats + ¹³¹I
- T0 and 1 month
- n=10 also GFR
- Correlation between GFR and SDMA was moderate

FIGURE 1 Serum creatinine, serum SDMA, and GFR before (T0) and 1 month after (T1) radioiodine treatment. Dotted lines show upper limit of reference interval for SDMA and creatinine and borderline low cutoff value for GFR. GFR, glomerular filtration rate; SDMA, symmetric dimethylarginine

Measuring endogeneous TSH?

- Human medicine
 - TSH often used as first line screening
 - assay more sensitive
- TSH in cats
 - Commercial feline kit not available (96% homology with canine TSH)
 - Helps in detection of iatrogenic or congenital hypothyroidism
 - Peterson et al. JVIM 2015:
 - 98% of hyperthyroid cats have suppressed TSH
 - 70 % euthyroid cats have detectable TSH
 - very sensitive, but not specific

Role is more important in detection of iatrogenic hypothyroidism

If used; always with TT4

Received: 5 May 2022 | Accepted: 10 August 2022

DOI: 10.1111/ivim.16524

STANDARD ARTICLE

Association of recessive c.430G>A (p.(Gly144Arg)) thyroid peroxidase variant with primary congenital hypothyroidism in cats

Mario Van Poucke¹ | Emilie Van Renterghem² | Mark E. Peterson³ | Marit F, van den Berg² | Emmelie Stock⁴ | Luc J, Peelman¹ | Sylvie Daminet²

¹Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium

²Department of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium

³Animal Endocrine Clinic, New York, New York USA

⁴Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium

Correspondence

Sylvie Daminet, Department of Small Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. Fmail: sylvie.daminet@ugent.be

Abstract

Background: Primary congenital hypothyroidism (CH) is a rare endocrine disorder in cats with a largely unknown genetic cause.

Objectives: Describe the clinical presentation of CH in 11 affected cats and identify the causal genetic variant.

Animals: Eleven CH-cats from 10 unrelated families, 11 CH-free family members, 21 unrelated CH-free cats, and 155 unrelated nondiagnosed cats from different

Methods: Case control study of CH-cats and their siblings (2019-2021). Diagnosis was based on low to low-normal serum thyroxine (T4) concentrations, high thyroidstimulating hormone (TSH) concentrations and clinical signs compatible with CH. We identified the causal variant using Sanger sequencing, genotyping via PCR-RFLP and

variant interpretation using A Results: All CH-cats (5 weeks not palpable in all. Thyroid so high uptake by thyroid glands mally low uptake, compatible dase (TPO). All cases were ho (p.(Gly144Arg)), while none o erozygous for this recessive v estimated allele frequency of Conclusions and Clinical Imp TSH and abnormally low to I cats. All cases had dyshormo

novel TPO missense variant (not described in humans) causes CH in cats and awareness of it can assist in diagnosis and breeding.

Journal of Veterinary Internal Medicine ACVIM | 1601 VAN POUCKE ET AL.

FIGURE 3 Pictures of kittens with primary CH. Notice clear disproportionate dwarfism in case 4 (right) with a large, broad head, small ears, a round body, a short neck and short limbs, compared to the more subtle changes in case 1 (left)

Conclusions and Clinical Importance: Disproportionate dwarfism, abnormally high TSH and abnormally low to low-normal T4 concentrations are diagnostic for CH in cats. All cases had dyshormonogenesis demonstrated by thyroid scintigraphy. This novel TPO missense variant (not described in humans) causes CH in cats and awareness of it can assist in diagnosis and breeding.

Before treatment

After treatment

TT4: 7 nmol/L

TSH: 1.2 ng/ml

Monitoring: clinical signs resolve + T4 (No TSH)
Standardise meal and timing blood sampling

Clinical response

Activity level: 7 days

Weight loss: 2-4 weeks

Anemia: 2-4 weeks

Dermato: 2-4 months

Neuro: 2-3 months

- Thyrotoxicosis?
 - Not frequent
 - Careful with hepatic or renal insufficient

Hormonal – monitoring - TT4

- Major individual variation of L-thyroxine absorption
 TT4 should be followed
- When?
 - After ± 1 month
 - After stabilization: 2 x /year
 - 2 à 4 h after administration of L-thyroxine (peak)
 - Administer L-thyroxine: always with or without food
 - Standardize timing of blood sampling

Standardize

Slow hair growth after shaving,...

Low TT4 and high TSH

Total T4
TSH

Free T4
TGAA, anti-T4, anti-T3 Ab
TSH stimulation test

Scintigraphy

- Physiologic factors (breed: sighthounds!)
- Systemic non thyroidal illness (disease → low T4)
- Medication (influence on T4 and sometimes TSH)

Venice, Mini Schnauzer MC 12

Low T4, without increased TSH = frustration!

- Epilepsy since 1 year; pexion since last 2 months (clusters)
- More quiet, now restlessness
- PCV 27 %
- TT4 <6,45 nmol/l (6,45-43)
- TSH 0.04 ng/ml (<0.5)

Venice, Mini Schnauzer MC 12

- Epilepsy since 1 year; pexion since last 2 months (clusters)
- More quiet, now restlessness
- PCV 27 %
- TT4 <6,45 nmol/l (6,45-43)
- TSH 0.04 ng/ml (<0.5)

Low T4, without increased TSH = frustration!

Influence of drugs

Aspirine and ketoprofen

Daminet et al., Vet J, 2003

	TT4	FT4	TSH	TSH Stim
GC (↑)	\downarrow	\	=	\
KBr	=	=	=	= 5
Feno	\	= or ↓	= of ↑	NS
TMS	 	\	↑	\
Propranolol	=	= 10	=	=
Carprofen	= or ↓	= (or ↓)	= or ↓	NS
ASA	\downarrow	=	=	NS
Meloxicam	=	=	=	NS
Ketoprofen	=	=	=	NS
Etodolac	=	=	=	NS
Clomipramine	\	\	=	NS

Use of recombinant human thyroid-stimulating hormone for thyrotropin stimulation test in healthy, hypothyroid and euthyroid sick dogs

Sylvie Daminet, Lyanne Fifle, Manon Paradis, Luc Duchateau, Maxim Morea

Can Vet J 2007;48:1273-1279

Retrospective study – Use of rhTSH - Results

Missault Astrid et al.

Thyroid scintigraphy

Reliable

- Cost price
- Sometimes sedation
- Only in specialized centers
- Radioactivity

75% → Clear
Other 25 % → ideally further work up

Hypothyroidism in dogs

- Frequent?
- Overdiagnosed?
- Acquired
- Lymphocytic thyroiditis
- 2-8 years old
- Esp. middle- to larger breeds
- Breed predisposition → ↑ suspicion

Symptoms not specific

Tests are not perfect

Some factors influence test

Quid breed?

- Greyhound, Scottish Deerhound
- Whippet, Basenji, Sloughi, Saluki, Shar-pei

Shiel et al. Vet Rec 2007 Seavers et al. AVJ 2008 Panakova et al. JVIM 2008 Van Geffen et al. Vet J Lenfest 2022

Serum thyroid hormone concentrations and thyroglobulin autoantibodies in trained and non-trained healthy whippets

Cindy van Geffen ^{a,*}, Valérie Bavegems ^a, Luc Duchateau ^b, Katrien De Roover ^a, Sylvie Daminet ^a

Total thyroxine (nmol/L)

Free thyroxine (pmol/L)

Canine thyroid stimulating hormone (ng/mL)

Quid low TT4?

- 'Systemic disease' can also
 - $\rightarrow \downarrow T4$
- "Non thyroidal illness"

Kantrowitz, 2001

Kantrowitz et al., JAVMA, 2001

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/rvsc

Free thyroxine measurement by analogue immunoassay and equilibrium dialysis in dogs with non-thyroidal illness

Michael Bennaim^{a,1}, Robert E. Shiel^a, Helen Evans^b, Carmel T. Mooney^{a,*}

^a University College Dublin Veterinary Hospital, University College Dublin, Belfield, Dublin 4, Ireland

ARTICLE INFO

Keywords: Endocrinology Canine Hypothyroidism

ABSTRACT

Objectives: Measurement of free T4 by analogue immunoassay (fT4a) is popular but its ability to differentiate hypothyroidism from non-thyroidal illness (NTI) is unclear. The aims were to assess fT4a concentrations in dogs with NTI and to explore diagnostic agreement with total T4 and free T4 measured by equilibrium dialysis (fT4d). Methods: fT4a was measured in dogs classified with mild, moderate and severe NTI. Total T4 and fT4d were measured in a subgroup of these dogs.

Results: 146 dogs were included of which 84, 35 and 27 had mild, moderate and severe NTI, respectively. Median (range) fT4a concentrations (pmol/L) were significantly lower (P=0.023 and P<0.001) in dogs with severe (3.66 (3.86–23.60)) compared with moderate (11.10 (3.86–34.70)) and mild (15.25 (3.86–48.60)) NTI. Overall, 49 (33.6% [95% CI, 26.4–41.6]) dogs had low fT4a concentration. All thyroid hormones were measured in 74 dogs. Agreement was substantial between total T4 and fT4a ($\kappa=0.79$ [95% CI, 0.65–0.92]) and fT4a and fT4d ($\kappa=0.63$ [95% CI, 0.47-0.79]) but moderate between total T4 and fT4d ($\kappa=0.49$ [95% CI, 0.32–0.66]). Of 42 dogs with low total T4 concentration, five (11.9% [95% CI, 5.19–24.99]) and 18 (42.9% [95% CI, 29.12–57.80]) had fT4a and fT4d within reference interval, respectively.

Conclusions and clinical importance: fT4a and fT4d cannot be used interchangeably. Measurement of fT4a provides limited further diagnostic information over measurement of total T4 in dogs with NTI. This study raises concerns regarding the ability of fT4a to differentiate NTI from hypothyroidism in dogs with low total T4 concentrations.

Free T4 analogue immunoassay and Free T4 after equilibrium dialysis can NOT be used interchangeably

^b NationWide Veterinary Specialist Laboratories, Cambridge, United Kingdom

Interpretation of T4 values in dogs

Diagnosis unclear: rhTSH stimulation test or scintigraphy

https://www.schildklierziekten-khd.be

