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Local Cloud

AI-Rad Companion

Introduction
AI-Rad Companion Chest CT is a decision support  
tool for the radiological assessment of computed  
tomography (CT) images of the thorax. It helps  
radiologists interpret CT images of the thorax more 
quickly and more precisely (doing more by doing less) 
and reduces the time needed to document the  
findings with the help of automatic measurements.  
It is vendor-neutral, which means that the software  
can evaluate image data from any CT system  
manufacturer. Enabled by the teamplay digital  
health platform and using state-of-the-art image 
processing algorithms supported by artificial  
intelligence, AI-Rad Companion Chest CT delivers  
value in four key areas:

1.  Accelerated interpretation and workflow efficiency

2.  Improved clinical outcomes and increased accuracy

3.  Provision of additional clinically relevant information 
and visual highlighting

4.  Standardized results while helping to reduce inter-
reader variability.

It focuses on three main parts of the thorax: the lungs 
(AI-Rad Companion (Pulmonary)), the cardiovascular 
system (AI-Rad Companion (Cardiovascular)) and the 
spine (AI-Rad Companion (Musculoskeletal)).

The typical workflow consists out of the following steps:

1.  Reconstructed CT images of the thorax are sent  
to the PACS for interpretation.

2.  In parallel, they are also sent to AI-Rad Companion. 
Extensions are launched automatically.

3.  The results of AI-Rad Companion can either be sent  
to a web-based review software or directly to PACS. 
Here they can be used in combination with the original 
data for reporting purposes.

This whitepaper is intended to provide an overview  
of the product features, describe the individual  
algorithmic components, discuss requirements for  
data to be processed using the device, and to provide  
an overview of internal and external proof points 
assessing the performance and illustrating the clinical 
value of the application.

Product Features
AI-Rad Companion Chest CT consists of three medical 
devices: AI-Rad Companion (Pulmonary), AI-Rad 
Companion (Cardiovascular) and AI-Rad Companion 
(Musculoskeletal).
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AI-Rad Companion (Pulmonary)
The radiological assessment of pulmonary nodules is one 
of the most common indications for AI-Rad Companion 
Chest CT. The radiologist needs to identify the nodules, 
measure the diameters and – ideally – also their volume 
(see guidelines of the Fleischner Society [1]). A second  
important application of AI-Rad Companion Chest CT is 
the analysis of lung parenchyma. Reduced density can 
indicate emphysema and/or COPD while increased 
density can indicate inflammatory processes such as 
pneumonia.

AI-Rad Companion (Pulmonary) provides the following 
features with respect to the analysis of the lung:

• Detection and segmentation of lung nodules  
and localization with respect to lung lobes

• Correlation of detected nodule with known priors  
and quantification of changes in size1 

• Analysis of the lung parenchyma based  
on segmented lung lobes with respect to:
• areas of low attenuation  

(low attenuation volume, or LAV)
• areas of opacity
• volume of lung lobes

Exemplary outputs of AI-Rad Companion (Pulmonary) are 
shown in Figure 1 and Figure 2, respectively. In the 
product, the LAV-Analysis is called “Lung Parenchyma 
Analysis”, while the opacity analysis is called “Pulmonary 
Density”.

1  AI-Rad Companion Chest CT will correlate each segmented lung nodule with 
known most recent prior (min. time difference > 10 days).

Figure 2: Outputs of the Pulmonary feature (cont’d). 
LAV-analysis (2A), opacity detection (2B).

2A

2B

Figure 1: Outputs of the Pulmonary feature. Lung nodule 
detection, measurement and correlation with prior.
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AI-Rad Companion (Cardiovascular)
For the radiological assessment of the cardiovascular 
system a large variety of dedicated CT scan protocols 
exist depending on the clinical indication. The protocols 
differ mainly with respect to the cardiac phase in which 
the acquisition is performed (controlled via ECG-gating) 
and the type and timing of contrast enhancement. 
AI-Rad Companion (Cardiovascular) is designed to work 
with any of these protocols, particularly the most generic 
non-gated and non-contrast-enhanced Chest CT scans. 
Of course, this also limits the analysis to features that 
can be reliably assessed on generic chest CT data. The 
features are:

• Measurement of heart volume and quantification of 
coronary calcium volume (on unenhanced data only)

• Segmentation of aorta and diameter measurements 
(on both native and contrast-enhanced data)
• at 9 landmarks according to AHA-guidelines [2]
• at the location of maximum diameter of the 

ascending and descending aorta, respectively

Exemplary outputs of AI-Rad Companion (Cardiovascular) 
are shown in Figure 3.

It is important to understand that the user should in- 
terpret the results of AI-Rad Companion (Cardiovascular) 
with respect to the actual scan protocol used. E.g., 
motion artifacts on a non-gated exam may hamper the 
accuracy of the aortic diameter measurements.  
Analogously, the coronary calcium analysis provides  
the total volume of the – potentially motion corrupted – 
calcium clusters but does not perform Agatstson  
scoring which requires a gated scan and is the gold  
standard for dedicated cardiac CT scans. 

However, the importance of the analysis of both coro-
nary calcium and aorta in the context of chest CT is to be 
pointed out. Both features are listed in the recommenda-
tions by the ACR Incidental Findings Committee [3].  
The 2016 SCCT/STR guidelines [4] state that coronary 
artery calcium “should be evaluated and reported on all 
non-contrast chest CT examinations”. Analogously, in a 
consensus statement the British societies BSCi/BSCCT and 
BSTI [5] “recommend that coronary artery calcification  
is reported on all non-gated thoracic CT using a simple 
patient-based score (none, mild, moderate, severe)”.

In their 2010 guidelines [2] the ACCF/AHA states that 
“many thoracic aortic diseases, results of treatment for 
stable, often asymptomatic, but high-risk conditions  Figure 3: Outputs of the Cardiovascular device.  

Coronary calcium detection (3A), aorta analysis (3B).

3A

3B

are far better than the results of treatment required for 
acute and often catastrophic disease presentations.  
Thus, the identification and treatment of patients at risk 
for acute and catastrophic disease presentations prior  
to such an occurrence are paramount to eliminating the 
high morbidity and mortality associated with acute 
presentations” and hence motivates the automatic analysis 
of the thoracic aorta on any chest CT. In the guidelines  
it is also described that the thoracic aorta should be 
measured at nine predefined anatomical locations. “The 
use of standardized measurements helps minimize errant 
reports of significant aneurysm growth due to technique 
or inter-reader variability in measuring technique.” [2]

In addition, diameter measurements are also performed 
at the location of maximum diameter of the ascending 
and descending aorta, respectively.
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AI-Rad Companion (Musculoskeletal)
Osteoporosis manifests as loss of bone density e.g. in the 
spine, and consequently in vertebral compression fractures. 
The International Osteoporosis Foundation (IOF) states 
that “there is strong evidence of widespread under-diag-
nosis of vertebral fractures” [6]. Pickhardt et al. [7] and 
more recently Cohen et al. [8] showed that the HU-values 
of the spine obtained from CT data acquired for other  
indications can be used to identify osteoporotic patients 
and called this approach “opportunistic screening for osteo-
porosis”. AI-Rad Companion (Musculoskeletal) provides: 

• Labeling and segmentation of thoracic vertebras
• Measurements of vertebrae heights
• Quantification of vertebral density (in HU)

Exemplary outputs are shown in Figure 4.

Workflow
AI-Rad Companion Chest CT offers advanced ways  
of workflow customization. By design, all results are 
presented in the form of an annotated axial series, a  
3D rendering, and a concise summary table – enabling 
integration into different reading workflows. Moreover,  
a DICOM Structured Report with measurement results  
is provided.

1.  Efficiency gains are best accomplished when AI-Rad 
Companion is used to automate the repetitive  
and manually tedious task such as measurements.  
All results are readily available the moment a case is 

Figure 4: Output of the Musculoskeletal device: Height 
and density measurements of the thoracic vertebrae.

1

opened. A results table summarizes all findings and 
measurements. A color-coding scheme is used to draw 
the attention to potential abnormalities. Added 3D 
renderings quickly provide a presentation overview of 
the type, number, and spatial context of all findings. 
Upon confirmation of the findings, the results are 
straightforwardly transferred to the report.

2.  Results of the AI-Rad Companion are best incorporated 
into the primary read by synchronizing annotated 
axials with the corresponding original series. As the 
reader scrolls through the stack, through highlighting 

2
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findings their attention is drawn to potential abnor-
malities. At the same time, the correctness of the AI 
results is easily verified through comparison with 
unannotated series.

3.  Minimal disruption to the established workflow and  
unbiased reading is achieved when AI is used in  
a “spell checker” mode. Here, the reader would stick  
to their established reading patterns, but just before 
closing the case one last glance at the results  
pictogram allows for a quick and easy confirmation  
that indeed nothing was missed. 

a likelihood value (a final confidence score above or 
equal to an empirically determined threshold) are  
labeled as nodule candidates.

The Post-Filtering step includes the application of two 
cascaded filters. The first one aims at removing false 
positives originating (a) from the colon and a second  
one from (b) calcified protrusions (for example, areas 
where the sternum meets the manubrium, spine  
malformations, and osteophytes, and so on). The  
first filter is a CNN-based classifier that has a similar 
structure to that of the classifier in the Classification 
step. The second filter uses three orthogonal slices at  
the candidate location as input to three CNN-based  
classifiers (one per slice). The results from the three  
classifiers is then combined by a max-voting mechanism. 
Any candidate deemed a false positive by either filter is 
thus removed.

The algorithms have been trained using more than  
2,000 manually curated CT data sets. Network layout 
diagrams have been published by Chamberlin et al. [9].

After detection, nodules are segmented by an algorithm 
based on region growing. Diameter and volume measure-
ments are provided.

Algorithm Description

Lung Nodule Detection (Lung CAD)  
and Segmentation
Lung CAD processing is performed in several  
consecutive steps: Preprocessing, Candidate Generation, 
Classification, and Post-Filtering.

In the Preprocessing step the input image is standard-
ized, and parenchyma is segmented using specialized 
Convolutional Neural Net (CNN, V-Net). This allows 
restricting the detection of findings within the lungs 
while optimizing the computation time.

Candidate Generation aims at achieving high sensitivity 
while keeping the number of candidates to a manage-
able number. The isotropic volume is partitioned into 
sub-volumes that are processed using a CNN. Then, 
filtering and non-maximum suppression yield a list of 
candidates for each sub-volume. A predefined threshold 
is applied on the confidence score to remove the least 
confidence (low score) findings. All candidates exceeding 
this threshold are passed on to the Classification step.

Classification utilizes a CNN-based classifier to process 
each candidate. The classifier calculates the feature 
values for each candidate and uses a soft-max function 
to estimate the likelihood of its type as either “nodule”  
or “non-nodule.” Candidates meeting or exceeding  

3
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Lung Nodule Follow-up
The lung nodule follow-up feature correlates nodules 
detected in the current scan (data1 at time point T1) 
with nodules detected in a previous Chest CT exam of  
the same patient (data0 at time point T0) and calculates 
temporal size changes2.

The algorithms used to establish the correlation has  
been designed based on the following assumptions  
and requirements:

• The algorithm shall be executed at T1, i.e., when 
processing data1, and assumes that the previous data 
set data0 has already been processed by the software 
at an earlier point in time.

• AI-Rad Companion (Pulmonary) has been designed as  
a cloud-based and on-edge product. Thus, it should be 
minimalistic in terms of the amount of data from T0 
that must be available at T1, i.e., when processing 
data1. In particular it should not require that the full 
original data set data0 is available at T1.

• Identification of lesion pairs should be independent of 
changes in lesion size or shape over time and should 
rely on the lesion location as a robust feature instead 
in order to prevent a bias towards matching nodules  
of the same size or shape.

Based on these requirements the algorithm works  
as follows:

1.  At T0, multi-scale deep reinforcement learning algo-
rithm [10] is used to extract anatomical landmarks 
from data0, and an AI-algorithm performs segmenta-
tion of the lung lobes (see Section on Lung Lobe 
Segmentation below). 
The list of landmarks, a mesh grid of the lung lobes, 
and the detected lesion coordinates and size proper-
ties (diameters and volume) are stored in a secure  
and encrypted long-term storage (LTS).

2.  At T1, the LTS is queried for a prior exam of the same 
patient and if available the stored data is loaded. 
Landmarks and lung lobe meshes from T0 are co- 
 registered with the anatomical landmarks and lung 
lobes meshes extracted from data1 using an affine 
registration, resulting in a coordinate transform F.  
The affine registration is capable of handling shift, 
rotation, scale and shear, in particular also capturing 
different breathing states of the two exams.

Table 1: Thresholds for diameter ratios dr.

Category Condition

green dr ≤ -30%

yellow -30% < dr < 20%

red dr  ≥ 20%

3.  The coordinate transform F is used to map the 
T0-nodules into the T1-coordinate system. Distances 
between potential nodule pairs are computed in the 
T1-coordinate system and a 3D distance threshold is 
used to identify nodule pairs.

4.  For each identified pair the temporal size changes are 
computed. For the diameter-based metrics the size 
change is expressed in terms of percentage change, 
i.e., as diameter ratio (dr). If the nodule volume has 
increased the change is expressed as volume doubling 
time.

In the RECIST guidelines [11] a decrease in diameter by at 
least 30% is defined as (partial) response to treatment, 
while an increase by at least 20% is defined as progres-
sive disease. If none of the criteria are met (i.e., diameter 
change within the interval (-30%, 20%)) the disease is 
considered stable. In analogy to these ranges, diameter 
measurements are highlighted by colors as follows:

Lung Lobe Segmentation
The lung lobe segmentation algorithm computes 
segmentation masks of the five lung lobes for a given  
CT data set of the chest. First, multi-scale deep reinforce-
ment learning [10] is used to robustly detect anatomical 
landmarks in a CT volume. The carina bifurcation  
and/or sternum tip are used to identify the lung region  
of interest (ROI). Next, the lung ROI image is resampled  
to a 2 mm isotropic volume and fed into an adversarial 
Deep Image-to-Image Network (DI2IN) [12] to generate 
the lung segmentation. Finally, the ROI segmentation 
mask is remapped to have the same dimension and the 
resolution as the input data. The DI2IN has been first 
trained on over 8,000 CT scans from a large group  
of patients with various diseases, then fine-tuned with  
over 1,000 scans with abnormal patterns including  
interstitial lung disease (ILD), pneumonia, and COVID-19.

The volume of the individual lung lobes, the left and 
right lung and of the complete lung are reported.

2  AI-Rad Companion Chest CT will correlate each segmented lung nodule with known most recent prior (min. time difference > 10 days).
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LAV Analysis
The LAV analysis is threshold-based, i.e. the algorithm 
determines all voxels below -950 Hounsfield Units (HU)  
in the lung. The threshold of -950 HU is widely used  
for the quantification of emphysema [13]. For each lung 
lobe as well as for the complete lung (i.e. the combina-
tion of all lobes) the ratio of LAV (LAV%) is reported.  
The following thresholds are being used as default values  
for highlighting:

Table 2: Thresholds for LAV%.

Category Condition

I LAV% < 12.5%

II 12.5% ≤ LAV% < 25%

III 25% ≤ LAV% < 37.5%

IV LAV% ≥ 37.5%

Table 4: Thresholds for coronary calcium volume V  
in mm3. 

Category Thresholds derived 
from Mets et al. [17]

Thresholds used by 
van Assen et al. [18]

I V < 10 V < 5

II 10 ≤ V < 100 5 ≤ V < 250

III 100 ≤ V < 500 250 ≤ V < 1000

IV V ≥ 500 V ≥ 1000

Table 3: Thresholds for PO.

LSS Condition

0 PO = 0

1 0 < PO ≤ 25%

2 25% < PO ≤ 50%

3 50% < PO ≤ 75%

4 PO > 75%

Opacity Detection and Quantification
The detection and quantification of opaque regions in 
the lung – typically associated to viral pneumonia such  
as Covid-19 – uses a DenseUNet [14] with anisotropic 
kernels. Details of the algorithm are described by 
Chaganti et al. [15]. The algorithm has been trained on 
over 900 CT scans from patients with ILDs, pneumonia, 
and COVID-19. 

The detected opacities are quantified by computing the 
percentage of opacity (PO, per lobe and per lung) and  
the percentage of high opacities (PHO, by applying  
a threshold of -200 HU on the subset of opaque regions). 
Based on the PO a lung severity score (LSS) is calculated 
according to Bernheim et al. [16]:

Heart Segmentation
The heart segmentation is performed using a deep 
U-shaped network [14] consisting of four convolutions 
and down-sampling steps, followed by four similar 
up-sampling layers. It has been trained on over 650 CT 
data sets. Subsequently, the heart segmentation mask  
is used to compute the heart volume.

Coronary Calcium Detection
Using the heart mask as ROI an initial set of voxels  
as candidates for potentially calcified regions is obtained 
by thresholding at 130 HU. For each candidate voxel  
an image patch centered around the voxel is fed into  
a deep learning-based classification algorithm. The deep 
learning model has two components: a convolutional 
neural network, which takes the image patch and a 
precomputed coronary territory map as inputs, and a 
dense neural network which operates on the coordinates 
of the voxel. A final prediction is made by combining 
features from both components to determine whether 
the voxel belongs to the coronary arteries. The algorithm 
has been trained on over 1,200 ECG-gated calcium 
scoring scans and fine-tuned on over 550 chest CTs. 
Additional details on the computational pipeline  
and the network topology have been described by  
Chamberlin et al. [9].

The total volume V of the detected coronary calcium  
is used for threshold-based categorization. Several 
thresholds for total calcium volume have been proposed 
in the literature. For instance, based on the NELSON 
study, Mets et al. [17] showed that a coronary calcium 
volume of 100 mm3 corresponds to an 8% increased risk 
of cardiovascular events and 500 mm3 to an increased 
risk of 48%. These volumes were used as default thresh-

A total LSS is computed as the sum of the individual 
scores per lobe.
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olds in AI-Rad Companion Chest CT 3. A third threshold  
at 10 mm3 is used to compensate for image noise. 
Slightly different values have been used in a publication 
by van Assen et al [18]. An overview is provided in Table 4.

Aorta Diameter Measurements
The aorta analysis pipeline consists of three steps:  
landmark detection, aorta segmentation, and diameter 
measurements.

Six aortic landmarks (Aortic Root, Aortic Arch Center, 
Brachiocephalic Artery Bifurcation, Left Common Carotid 
Artery, Left Subclavian Artery, and Celiac Trunk) are 
detected automatically based on Deep Reinforcement 
Learning [10].

The aortic root is used to define a ROI for the segmen- 
tation algorithm. Within the ROI the segmentation is 
performed using an adversarial DI2IN in a symmetric 
convolutional encoder-decoder architecture [12]. The 
front part is a convolutional encoder-decoder network 
with feature concatenation, and the backend is deep 
supervision network through multi-level. Blocks inside 
DI2IN consist of convolutional and upscaling layers.  
The algorithm has been trained on over 1,250 CT data 
sets including native and contrast-enhanced scans.

Given the aorta mask, a centerline model is used  
to generate the aortic centerline. The centerline  
is used in combination with aortic landmarks to identify 
measurement planes at nine locations according to  
the guidelines of the American Heart Association [2].  
The measurement planes for the maximum diameter of 
the ascending and descending aorta are identified by 
computing the area of each cross-sectional plane along 
the centerline in the respective ranges. For maximum 
diameter of the ascending aorta this range is defined  
as Sinotubular Junction (AHA-location #2) to Proximal 
Aortic Arch (AHA-location #4). For maximum diameter  
of the descending aorta the range is defined as Proximal 
Descending Aorta (AHA-location #6) to the end of the 
field of view. The centerline location of the maximum 
in-plane area is chosen as the location of the maximum 
diameter of the ascending and descending aorta,  
respectively.

In each of the eleven measurement planes (nine planes 
according to AHA-locations plus the two locations at 

maximum diameter of the ascending and descending 
aorta, respectively), multiple diameters are computed  
by computing intersections of rays starting from the 
centerline with the aortic mask. Based on these  
diameters, the maximum in-plane diameter is reported.

The maximum diameters d are used for threshold- 
based categorization. Recommended thresholds 4 for 
the severity of a potential aortic dilation or aneurysm 
have been derived from the AHA-Guidelines and values 
for the population mean and standard variation (std) 
given therein:

Table 5: Thresholds for aortic diameters d.

Category Condition

I d ≤ mean + 2*std

II d > mean + 2*std

III d > 1.5*mean

IV d ≥ 5.5 cm

The aorta module works for both native and contrast-
enhanced data with and without ECG-gating.

Vertebra Labeling and Density  
Measurement
The twelve thoracic vertebrae are localized and  
labeled using an algorithm based on wavelet features, 
AdaBoost, and local geometry constraints [19].  
Around each vertebra center cylindric regions of interest 
are used to measure the average HU-density of the 
trabecular bone.

Vertebra Segmentation and Height 
Measurement
The vertebra centers are also used to determine  
ROIs for the vertebra segmentation. Within the  
ROI the segmentation is performed using a DI2IN  
in a symmetric convolutional encoder-decoder  
architecture [12]. The algorithm has been trained  
on over 7,300 thoracic vertebrae.

3  In the software version available in the United States no default values are provided.
4  In the software version available in the United States the thresholds cannot be adapted by the user.
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Table 6: Thresholds for vertebra height ratios hr.

Category Condition

I hr ≥ 80%

II 80% > hr ≥ 75%

III 75% > hr ≥ 60%

IV hr < 60%

Data Requirements

Technical Requirements
AI-Rad Companion Chest CT uses a single DICOM series 
as input for all modules. In general, the algorithms are 
intended to work with any chest CT series. However, 
there are a couple of technical properties required for  
the device to process the cases:

• Primary axial images (image orientation 1\0\0\0\1\0)
• Volume scans without gaps, no gantry tilt
• Slice thickness ≤ 3 mm (for MSK ≤ 2 mm, preferably  

≤ 1 mm or below), see recommendations below
• Matrix size 512 × 512
• Photometric interpretation: MONOCHROME 2
• 16 bit, no lossy compression, samples per pixel: 1
• Rescale slope ≤ 5

The cardiovascluar module (heart segmentation  
and coronary calcium detection) has the additional 
requirements that the images are without contrast 

enhancement and kVp ≥ 100. That is because the initial 
candidate generation step is based on HU-thresholding 
and the threshold is not valid for contrast-enhanced 
scans nor for kVp < 100. The topic has been discussed  
in detail by Vonder et al. [21] and in a corresponding 
Siemens Healthineers Whitepaper on calcium quanti- 
fication on dedicated cardiac CT data [22].

Scan Parameter Recommendations
Besides the coronary calcium detection, HU-thresholding 
is also used in the LAV-analysis of the lung parenchyma. 
As a consequence, the results of these two features  
are sensitive to image noise. Image noise in CT data 
depends on many parameters, most prominently on slice 
thickness, reconstruction kernel, and dose. Hence the 
combination of thin slices, hard kernels, and low dose 
may result in very noisy images. For such data the 
cardiac module would reject the case (if there are too 
many calcium candidates) and the LAV analysis may be 
confounded by noise-related LAV-patches [23]. 

Table 7: Recommended scan parameters for AI-Rad Companion Chest CT. 
 fully supported  supported but results might be suboptimal  not supported

Reconstruction kernel Soft to medium kernel Hard kernel

Slice thickness ≤ 1 mm 1–2 mm 2–3 mm ≤ 1 mm 1–2 mm 2–3 mm

Lung nodules

Lung Parenchyma (LAV and opacities)

Aorta

Heart and Coronaries

Vertebrae

From the segmentation masks the sagittal midplane is 
extracted and within this plane height measurements  
at anterior, medial, and posterior location. Afterwards, 
the height ratios hr are computed by comparing heights 
of neighboring vertebrae using the Genant severity 
grading method [20]. Although originally developed on 
chest radiographs, the Genant method is a widely used 
also in CT imaging [6]:
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Table 8: Scan parameters used in various publications using AI-Rad Companion Chest CT.

Publication Patient cohort Feature(s) studied Study size Scanner model(s) Scan parameters

Chamberlin  
et al. [9]

Lung cancer 
screening

Lung nodules,  
cor. calcium 117

SOMATOM go.Top,  
Definition AS+, Definition 

Flash, and Force

protocol according to ACR-STR 
LDCT guidelines.

slice thickness: 1.0 mm

van Assen  
et al. [18]

Paired Cardiac and 
Chest CTs, consec-

utive Chest CTs
Cor. calcium 95

+ 168

SOMATOM Definition 
Flash, Definition AS+,  

and Force

slice thickness:  
1.0 mm–3.0 mm,

medium sharp kernel

Fischer  
et al. [23] Emphysema LAV 141 SOMATOM Definition 

Flash, Force, and Emotion

slice thickness 1.5 mm,
comparing two kernels: lung 
(B60s) and soft tissue (B31s)

Yacoub  
et al. [24] Consecutive cases all 100 SOMATOM Definition 

Flash, and Force
slice thickness: 1.0 mm,

soft tissue kernel

Rückel  
et al. [25] Emergency CT

Lung nodules,  
aorta diam., cor. 

calcium, heart size, 
vert. heights

105 SOMATOM Force slice thickness: 0.75 mm,
soft tissue kernel Br36d

Fischer  
et al. [26] COPD Lung lobes, LAV 137 SOMATOM Definition 

Flash, Force, and Emotion
slice thickness 1.5 mm,

lung kernel

Rückel  
et al. [28]

Aortic aneurysm 
follow-up Aorta diam. 18 x 2

SOMATOM Definition 
Flash, Force, and Defini-

tion AS+, GE Optima 
CT660, Discovery 750 HD

slice thickness:  
0.6 mm –3.0 mm,
soft tissue kernel

Weikert  
et al. [29] COVID-19 patients

Lobe volume, PO,  
PHO, LSS, LAV,  
heart size, cor. 

calcium, aorta diam

120 SOMATOM Definition AS+, 
and Force

slice thickness: 1.0 mm,
soft tissue kernel

Homayounieh  
et al. [30] COVID-19 patients Lobe volume,  

PO, PHO 241

SOMATOM Definition 
Flash, Force, and Defini-
tion Edge, Emotion 16,  
GE Discovery 750 HD

slice thickness:  
1.0 mm–2.0 mm, 

soft tissue kernel B20f

Abadia  
et al. [31]

Lung nodules in 
cases w/ complex 

lung disease

Lung lobes, 
Lung nodules

103
+ 40 SOMATOM Force slice thickness: 1.0 mm,

sharp body kernel

Ebrahimian  
et al. (32) Emphysema LAV 113

GE Discovery 750 HD, 
Philips iCT, SOMATOM 

Definition Edge

GE: ASIR at 40% Detail kernel
Philips: iDose 4, strength 3, 
kernel B, Siemens: Admire 
strength 2, I31f, slice thick-
ness: 0.625 mm – 1.25 mm

On the other hand, thin slices, i.e. high spatial resolution 
in z-direction, are required for most of the algorithms, in 
particular for accurate vertebrae height measurements 
(ideally slice thickness should be ≤ 1 mm), detailed delin-
eation of lung lobes and accurate lung nodule volumetry.

In summary, Table 7 displays the recommendations  
of scan parameters for the individual modules of AI-Rad 
Companion Chest CT. To achieve optimal results for  
all modules, it is recommended to use a thin slice with  
a soft to medium kernel. In addition, Table 8 summarizes 
scan parameters used in various clinical studies using 
AI-Rad Companion Chest CT. Details about these and 
other studies will be discussed in the subsequent section.
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Considerations Regarding  
Patient Population 
Table 8 also illustrates that AI-Rad Companion  
Chest CT has been used to analyze a broad spectrum  
of patient cohorts:

• low dose lung cancer screening [9],

• consecutive cohorts, independent of particular clinical 
indications [24; 18] or with an indication unrelated  
to the features of AI-Rad Companion Chest CT like data 
from the emergency department [25],

• patients with known disease patterns relevant for  
the feature of investigation, like emphysema/COPD 
[26; 23], osteoporosis [27], aortic aneurysms [28] 
COVID-19 [29; 30], or

• patients with known comorbidities that make the 
assessment of the feature under investigation more 
challenging, such as the detection of lung nodules  
in the presence of, e.g. ILD [31].

The broad spectrum illustrates the versatile and generic 
design of the algorithms of AI-Rad Companion Chest CT. 
On the other hand, one would always find cases where – 
due to severe pathology, comorbidity, or anatomical 

deviation, but also due to imaging artefacts like motion 
or noise – one or more algorithms might fail or produce 
incorrect result. In that context it is also important to 
note that the output images generated by AI-Rad 
Companion Chest CT are designed in a way that the user 
can easily verify the correctness of the result. An example 
would be the sagittal MPR of the spine, see Figure 5.

Figure 5: AI-Rad Companion (Musculoskeletal) output:  
Sagittal view of the spine including height and density 
measurement. The incorrect height measurement for T1 
(due to image noise) can easily be verified by the user. 

Proof Points:  
Performance and Clinical Value 
AI-Rad Companion Chest CT delivers value in four main 
categories efficiency, accuracy, additional clinically  
relevant information, and standardization. These 
improvements of the radiologist’s daily work need to  
be interpreted within the context of particular clinical use 
cases. Moreover, the foundation for the improvements in 
all four categories lies in an excellent algorithm perfor-
mance. Hence also the scientific evidence, in terms of 
peer-reviewed journal publications but also internal 
performance tests, clusters around Accuracy and Clinical 
Value for a particular use case, Efficiency and Standard-
ization, and Standalone performance of the individual 
algorithm components.

Accuracy and Clinical Value
In the study by Chamberlin et al. [9] N = 117 lung cancer 
screening exams were processed by AI-Rad Companion 
Chest CT and analyzed with respect to lung nodules and 

coronary calcium. The agreement with expert reader  
has been found excellent (Cohen’s kappa of lung nodule 
detection: 0.846, intraclass correlation coefficient of 
coronary calcium volume: 0.904) at a sensitivity of 100% 
and 92.9% (presence of lung nodules and presence of 
coronary calcifications, respectively) and a specificity  
of 70.8% and 96.0%, respectively. The authors also use 
the results for predicting of lung cancer and major 
adverse cardiac events at 1-year follow-up yielding AUC-
values of 0.942 and 0.911, respectively, emphasizing 
that “this information can be used to improve diagnostic 
ability, facilitate intervention, improve morbidity and 
mortality, and decrease healthcare costs”.

Focusing on the other end of the spectrum of patient 
cohorts, namely patients with complex lung disease 
such as ILD, COPD, bronchitis, edema, and pulmonary 
embolism, Abadia et al. [31] investigated the accuracy 
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The authors state that “such results align well with  
the general recommendation to maximize sensitivity 
when AI is being used in radiology to detect abnor- 
malities, even at the expense of lower specificity, in order  
to ensure that fewer abnormal findings are missed.  
Our findings illustrate that the use of AI for diagnostic 
reading provides rather a support tool which is not 
intended to replace the role of a radiologist.” They 
conclude that “incorporating AI support into radiology 
workflows can provide significant added value to clinical 
radiology reporting”.

The low sensitivity of the radiologists in particular  
among the incidental findings has also been studied  
by Rückel et al. [25] in the particular time-critical  
setting of emergency CT. The following abnormalities 
were missing in the original reports but identified by 

of the lung nodule detection and localization (N  =  103 
plus 40 controls). On a patient level AI-Rad Companion 
Chest CT showed a sensitivity of 89.4% and a specificity 
of 82.5%. On the individual nodule level sensitivity was 
67.7%, similar to the accuracy reported for experienced  
radiologists.

On an unspecific but representative patient population, 
i.e. N = 100 consecutive cases, Yacoub et al. [24] 
reported sensitivity and specificity of all features of 
AI-Rad Companion Chest CT, see Table 9.

Table 9: Sensitivity and specificity of AI-Rad Companion 
Chest CT and radiological reports on N = 100 consecutive 
cases as reported by Yacoub et al. [24].

N  
positive 

cases

Sensitivity Specificity

AI Report AI Report

Lung 
nodules 83 92.8% 97.6% 82.4% 100%

Emphysema 31 80.6% 74.2% 66.7% 97.1%

Aortic  
dilation 27 96.3% 25.9% 81.4% 100%

Coronary 
Calcium 59 89.8% 75.4% 100% 94.9%

Vertebra 
compression 9 100% 100% 63.7% 100%

AI-Rad Companion Chest CT and confirmed by radiolo-
gists in a consecutive cohort of N = 105 whole-body 
emergency CTs:

• 23.8% increased heart size,
• 16.2% coronary calcifications,
• 32.4% aortic ectasia,
• 1.9% actionable lung nodules, and
• 12.4% vertebra fractures.

The authors point out that “In particular, the integration 
of different specialized algorithms in a single software 
solution is promising to avoid clinically too narrow AI 
applications. But also, with regard to less urgent appli- 
cations of medical imaging, it should also be mentioned 
that especially non-radiology clinicians might even take 
more benefit from AI-assisted image analysis compared 
to anyway well-trained radiologists, e.g., in clinical 
settings without 24/7 radiology coverage or long turn-
around times for radiology reporting.”

Consecutive patients (N = 168) were also enrolled  
in a study on coronary calcium detection by van Assen  
et al. [18]. Here the coronary calcium volume computed 
by AI-Rad Companion Chest CT was compared against  
the calcium volume obtained from manual calcium 
scoring. The correlation was found excellent (logarithmic 
correlation coefficient 0.923). By applying volume-
thresholds (see Table 4) the AI-computed calcium volume 
was categorized into no, mild, moderate, and severe.  
The categories were compared against qualitative visual 
rating by an experienced cardiac radiologist. Results  
are shown in Table 10. 82% of all cases were correctly  
classified with all wrongly classified scans being attributed 
to an adjacent category.

Table 10: Category agreement between manual  
qualitative assessment and AI determined calcium 
volume as reported by van Assen et al. [18].

Expert\AI No Mild Moderate Severe

No 60 6 0 0

Mild 7 44 0 0

Moderate 0 6 14 5

Severe 0 0 4 20
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In a second arm of the study, N = 95 patients were identi-
fied which underwent both dedicated coronary calcium 
scoring exams (non-contrasted, ECG-gated cardiac CTs) 
and chest CTs within 1.5 years. For those patients, 
conventional calcium scoring was performed according 
to Agatston on the cardiac CTs and compared to  
the calcium volume computed by AI-Rad Companion 
Chest CT on the chest CT data. By design, the agreement  
of these results will be lower, simply because the data 
compared originates from different acquisitions from 
different time points. Nevertheless, the correlation 
between manual Agatston score and calcium volume 
computed by AI-Rad Companion Chest CT was found 
excellent (logarithmic correlation coefficient 0.921). 
When comparing threshold-based categories (volume 
threshold as in Table 4 vs. standard Agatston risk  
categories), 70% of all cases were classified correctly,  
in only 5% the prediction was more than one category 
off. Moreover, a misclassification into the “no calcium” 
category, which – according to the authors [18] –  
“would have the largest impact on patient treatment, 
since these patients will be considered to have no/little 
cardiac risk”, occurred only in 3% of the cases.

Particular features of AI-Rad Companion Chest CT  
were also studied by Savage et al. [27], correlating the 
average HU-density of the vertebrae computed by the 
software with T-scores obtained from dual-energy X-ray 
absorptiometry (DEXA) on N = 65 patients yielding  
significant difference between healthy and osteoporotic 
(i.e. T < -2.5) patients. This is supported by work  
by Cohen et al. [8] using manual HU-measurements.  
The authors found that a threshold of 110 HU  
could be used to identify osteoporotic patients with  
a specificity of 93%.

Two publications by Fischer et al. [26; 23] study  
the results of the lung lobe-based LAV analysis in  
emphysema/COPD patients (N = 141 and N = 137,  
respectively). The correlation of LAV with spirometry-
based Tiffeneau index was -0.86, and 0.88 with GOLD 
stages, respectively. The LAV of the upper lobes  
“was also able to most clearly distinguish mild and 
moderate forms of COPD. This is particularly relevant  
due to the fact that early disease processes often  
elude conventional pulmonary function diagnostics. 
Earlier detection of COPD is a crucial element for  
positively altering the course of disease progression 
through various therapeutic options” [26]. Ebrahamian  
et al. [32] showed that the LAV-based quantification of 
emphysema is of similar quality than visual assessment 
by radiologists (N=113).

In the course of the Covid-19 pandemic two papers  
by Weikert et al. [29] and Homayounieh et al. [30] inves-
tigated the use of AI-Rad Companion Chest CT features 
for the prediction of patient management and patient 
outcome in COVID-19 patients: Homayounieh et al. [30] 
used a combination of lung lobe volumes, PO and PHO 
yielding a “higher AUC for predicting ICU admission than 
subjective severity scores” (N = 241). Weikert et al. [29] 
added also cardiovascular metrics obtained from AI-Rad 
Companion Chest CT, namely heart volume, coronary 
calcium volume, and aortic diameters, together with  
lab-findings yielding excellent predictions (AUC = 0.91, 
N = 120). In the work of Biebau et al [33], visual scores  
of lung injury were compared against AI-based scoring  
of the LSS on N = 182 consecutive Covid-19 patients 
yielding a very good correlation of 0.89.

Efficiency and Standardization
Increasing efficiency of the radiological workflow  
is key to manage increasing workload and at the same 
time saving healthcare cost. In the aforementioned  
study by Abadia et al. [31] on patients with complex  
lung disease average reading time for lung nodules was 
2:44 min ± 0:54 min without support of AI-Rad 
Companion Chest CT. After a month of washout-period a 
random subset of N = 20 patients of the original study 
were reevaluated with support of AI-Rad Companion 
Chest CT. Here average reading time was reduced to  
0:36 min, i.e. a significant reduction by 78%. Moreover, 
“the expert reported increased confidence for lung 
nodule detection for all 20 cases” [31]. 

The potential of AI-Rad Companion Chest CT to  
reduce reading time has been evaluated in a study by 
Yacoub et al. [34]: In this prospective study, chest CT 
reading times by three radiologists were assessed. N=390 
consecutive CT scans were enrolled, and each reader  
was assigned an equal number of cases with and without 
AI-Rad Companion Chest CT results. Mean reading  
using AI-support was reduced by 92.9 sec (22.1%). 
Müller et al. [35] performed a prospective study with 
N=90 cases and two readers. Here no time saving was 
reported but additional actionable findings were  
found in 12.5% of the cases as well as qualitative 
improvements: change of case impression (12.5%), 
better case overview (55%) and increased diagnostic 
confidence (20%).

Average reading time was also in the focus in a study  
by Rückel et al. [28] on N = 18 patients with aortic 
ectasia undergoing follow-up assessments (two  
timepoints per patient). Reading of the two time-points 
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studies was performed by three radiologists with and 
without support of AI-Rad Companion Chest CT. Average  
reading time was reduced from 13:01 min to 4:46 min 
corresponding to a significant reduction by 63%. In  
addition, AI assistance reduced total diameter inter-
reader variability by 42.5%. Figure 6 summarizes time 
savings reported by the various studies.

Standalone Performance
Besides the validation of AI-Rad Companion Chest CT in 
studies performed by academic sites, internal standalone 
performance tests on the individual algorithms have 
been performed: 

• Lung nodule detection: For nodule size range of  
4 to 30 mm sensitivity was 93.1% at 1 false positives 
per case (median), N = 316.

• Lung nodule follow-up: Sensitivity of nodule 
matching: 94.3%, positive predictive value 99.1%, 
N=199.

• Lung lobe segmentation: Average DICE coefficients 
for the individual lung lobes ranged between  
0.95 and 0.98. Mean surface distance ranged between  
0.5 mm and 1.0 mm. Volume error was between  
1.5% and 3.5%. N = 4,500.

• Opacity quantification: Opaque regions were 
detected with a sensitivity of 89.4% at 0.544 average 
false positives per case. Correlation coefficient  
for PO was 0.945. 95%-Limits of agreement (LoA)  

of manual measurements of PO per lobe by two  
radiologists was established at 15.8%. Ratio of  
automatic PO measurements lying within the LoA  
was 93.0%. N = 149. 

• Heart segmentation: Average DICE coefficient  
was 0.93. N = 274.

• Coronary calcium detection: Logarithmic  
correlation coefficient of total coronary calcium 
volume was 0.96. N = 381.

• Aorta diameters: Average absolute error in aorta 
diameters was 1.6 mm across all nine measurement 
locations and varied between 1.2 mm and 2.2 mm per 
location. N=193.

• Vertebra HU-density: 95%-Limits of agreement (LoA) 
of manual density measurements by four radiologists 
was established at 64.1 HU. Ratio of automatic 
vertebra density measurements lying within the LoA 
was 98.8%. N = 150.

• Vertebrae heights: LoA of manual height measure-
ments by four radiologists was established at 2.86 mm 
for slice thickness ≤ 1.0 mm, and at 3.20 mm for slice 
thickness > 1.0 mm, respectively. Ratio of automatic 
vertebra height measurements lying within the LoA 
was 95.5% for slice thickness ≤ 1.0 mm and 92.6% for 
slice thickness > 1.0 mm. N=150.

Figure 6: Average reading times with and without support of AI-Rad Companion Chest CT.
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AI-Rad Companion Chest CT is not commercially  
available in all countries, and its future availability  
cannot be ensured.

The information in this document contains general tech-
nical descriptions of specifications and options as well as 
standard and optional features which do not always have 
to be present in individual cases, and which may not be 
commercially available in all countries. Due to regulatory 
reasons their future availability cannot be guaranteed. 
Please contact your local Siemens organization for 
further details.

Siemens reserves the right to modify the design, pack-
aging, specifications, and options described herein 
without prior notice. Please contact your local Siemens 
sales representative for the most current information. 

Note: Any technical data contained in this document may 
vary within defined tolerances. Original images always 
lose a certain amount of detail when reproduced.
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