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Introduction: The Motivation to  
Evolve Multi-modal SPECT and  
the Concept of xSPECT
Motivation to evolve SPECT/CT

Molecular imaging systems depict and measure biochemical 
processes in-situ and require advancements in multi-modality 
systems, molecular biology, and probe development to help 
fulfill the desire of substantially increased diagnostic power.1,2   

In clinical practice, such systems must, therefore, enable the physi-
cian to find, characterize, and follow disease over time. These 
requirements represent a technical challenge, and ultimately 
establish the need for both structural and functional data.

Such data should be acquired in an optimal fashion for the task 
at hand, and is typically done with dedicated imaging methods 
driven by various customizable parameters. Siemens introduced 
the Symbia™ series in 2005 by mechanically integrating a fully 
diagnostic-capable CT system with a SPECT system – at that time 
a unique concept. However, Symbia is ultimately still a SPECT 
system, with functional data acting as the primary source of 
information and the CT data as secondary. This arrangement of 
priorities manifested itself in CT images which were normally of 
lower quality than that actually allowed by the system. In other 
words, the view point was SPECT-centric.

In June 2013, Siemens introduced xSPECT technology, which 
represents a more complete integration of SPECT and CT data as 
compared to conventional SPECT/CT systems.

The concept of xSPECT – a new modality?

In order to depict and measure biochemical processes in-situ 
one needs to get information from inside the body to a detector 
outside the body. One method is SPECT imaging, where a tracer 
is injected into the patient. This tracer is radioactive, and emits 
photons that traverse the body (e.g., 140 keV for 99mTc), and 
are mostly absorbed by a cost-efficient detector. Clinical SPECT 
is radiation dose limited, and thus such a detector must be very 
sensitive. SPECT detectors can image the impact of a single tracer-
emitted photon. The price for such sensitivity is poor resolution. 
A CT scanner, on the other hand, delivers and detects more 
photons and thus allows for much finer spatial resolution. Typi-
cally, a doubling of resolution requires an eight-fold increase in 
dose at the same noise level3,4 yet, regardless of the technical 
implementation, the more photons with directional information 
that are detected, the higher the resolution of the system. Fact is, 
SPECT and CT do operate at different ends of the resolution spec-
trum or respective sensitivity, because of the requested primary 
clinical imaging needs of each modality. The acquisition design 
is optimized for the two modalities and thus distinctly different, 
but once data is obtained one can ask what benefits can we gain 
when the information from the data is integrated?
 
We want to extract as much information as possible from the 
structural data, and use that extra modal information to assist 
the reconstruction of the functional data.

Thus, a basic idea is to take better advantage of the sharper spatial 
resolution of the CT and the anatomical information contained 
therein, and thus we also need to preserve its spatial accuracy. In 
essence, we adopt a more structural-centric view point. The “x” in 
xSPECT represents that increased integration of the two modali-
ties, and a reminder of the change of the frame-of-reference from 
SPECT to CT.

xSPECT reconstruction uses the CT coordinate system as its 
reference system of choice to minimize interpolation errors of 
the information obtained from the anatomical modality, and the 
resulting reconstructed xSPECT image is created in a CT equivalent 
slice-by-slice DICOM format.

The preservation of greater spatial accuracy is enabled by requiring 
a denser spatial sampling of the functional data. For instance, 
to improve alignment of data (registration) and subsequently to 
make better use of the information contained in the high resolu-
tion CT, we use smaller pixel sizes and larger matrices. It may seem 
counter intuitive to increase the matrix size, as this increases the 
number of estimable parameters cubically and thus decreases the 
count density (count per pixel), a process which typically degrades 
reconstructed image quality. However, this unwanted side- effect 
can be mitigated if the image formation and reconstruction 
method is improved in tandem.

The underlying technology of xSPECT improves the image forma-
tion model, better preserves data characteristics, and opens a 
pathway to further integrate system- and application-specific 
context information into the emission tomography reconstruction 
process. These improvements more than make up for the increase 
in matrix size and its otherwise negative implications.

The idea of integrating context into the reconstruction is motivated 
by the way physicians read medical images. Just as a physician 
uses his or her knowledge and experience, along with the patient’s 
history and other diagnostic information provided by other tests 
when reading an image, we want to provide the reconstruction 
with additional information as well. By changing from a SPECT- to 
a CT-centric view and using advances in the underlying technolo-
gies, we can harness these benefits to assist the reconstruction of 
the xSPECT emission data. This amalgamation concept of multi-
modal data has a range of potential applications, but we start 
with a clinical application, single photon bone imaging, that has 
three significant advantages:
1.	The application has a high volume, and is well established,
2.	� There is minimal need for advanced registration solutions, 

where rigid body registration is mostly well justified, and
3.	� The Di-phosphonate uptake is correlated to bone turnover 

with a high signal-to-background ratio, and bone tissue is well 
imaged on a CT.

The field has a lot of experience with the bone application and its 
clinical workflow of planar/wholebody bone imaging, and SPECT 
as well as the familiar tracer, yet it is exactly this familiarity that 
allows for new concepts to be introduced and evolved. We are 
hopeful that the xSPECT concept can lead to further improvements 
in patient care.
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xSPECT technology enables the Symbia Intevo to become quantita-
tive: The xSPECT Symbia Intevo can measure activity concentration 
in Bq/ml at locations within the FOV. We introduce a NIST trace-
able calibration where we use a specifically designed 57Co source 
to calibrate the xSPECT Symbia Intevo to an absolute standard, 
largely removing detector performance variability.

Improvements in image quality, enabled by more accurate system 
modeling and a more powerful reconstruction engine also allow 
for more efficient use of available counts, maintaining excellent 
image quality for lower-count studies. In conjunction with dedi-
cated solutions, such as IQ•SPECT, or Enhanced Planar Processing, 
we provide solutions for faster scanning or scanning at lower dose.

All these advancements, in particular the introduction of quan-
titative procedures, may be augmented by automation. The 
Automated Quality Control (AutoQC) package and Automated 
Collimator Changer (ACC), lower the burden on technologists and 
increase overall efficiency.

The Technology Behind xSPECT

Motivation to move on from Maximum Likelihood 
Expectation Maximization (ML-EM) based  
reconstruction

The most widely used iterative reconstruction technique in clinical 
practice today is based on Ordered Subset Expectation Maximi-
zation (OSEM), derived in 1994 by Hudson and Larkin5, which 
is itself based on MLEM.6 The current Flash3D reconstruction 
engine belongs to this family of methods.7 In the case of SPECT, 
tomographic image reconstruction takes the form of an ill- condi-
tioned inverse problem8, 9 using noisy data, where the number 
of estimable parameters is roughly the same as the number of 
data points. In contrast to Filtered Back Projection (FBP), itera-
tive reconstructions exhibit non-stationary noise with a structure 
that changes across the FOV. In the case of MLEM (OSEM with 1 
subset), the noise magnitude (variance) increases with increasing 
counts.10 Nuyts confirmed that the image of the variance in 
unsmoothed MLEM images is very similar to the image of the 
mean values. The variance is therefore higher in regions of high 
activity, where diagnostic information resides.11 Furthermore, 
noise correlation properties are iteration-dependent, and it has 
been shown that noise characteristics have ramifications on lesion 
detection tasks.12, 13

The Maximum Likelihood method was originally introduced by 
Fisher in 191214, who subsequently described its limitations 
1928.15 Specifically, Fisher cited the case where the number of 
data points is roughly equal to the number of estimable param-
eters to be one for which the ML estimation process is poorly 
suited. In emission tomography, this is precisely the regime within 
which we must operate.

To guard against image noise resulting from this fundamental 
pitfall and achieve interpretable images, we terminate the recon-
struction early and apply post smoothing. Yet we accept that 
with this procedure we have resolution and noise characteristics 
that vary across the image due to the finite number of updates. 
Nevertheless, despite this drawback, this strategy is in clinical 
use because it produces visually pleasing results and allows for 
efficient compensation for the physics of the image formation 
process via procedures such as attenuation and scatter correction.

The ML-EM update mechanism is derived by maximizing the 
Poisson likelihood, yet the update formula itself is insensitive to 
the data statistics. For instance, simply scaling data by a constant 
factor has little effect on the ML-EM reconstruction, yet clearly the 
data is no longer Poisson. This insensitivity, even to a blatantly 
incorrect data alteration, must come at a price.

A typical ML-EM implementation uses a multiplicative update 
mechanism, where the update factor is positive, semidefinite, 
and essentially a ratio comparing the data and data model, which 
appears in the denominator. In Flash3D, we limit the denominator 
to a minimum threshold, avoiding the division by zero or very 
small numbers and thus not allowing the ratio to become too 
large. The choice of this minimum threshold, in conjunction with 
the multiplicative update method, gives rise to an “evaporation” 
effect, wherein counts in regions of low activity gravitate towards 
regions of high activity. Lowering this threshold value will yield 
noisier images, and increasing the threshold will increase the 
evaporation effect. In practice, this compromise limits the low 
count application of Flash3D.

We discuss noise and resolution properties in the context of 
characterization of the xSPECT reconstruction in more detail, 
and demonstrate, for example, the effect of count reduction on 
patient and phantom data to show the current count operating 
range of the method.16

The fundamentals of the xSPECT  
reconstruction platform

Each iterative reconstruction algorithm consists of an optimiza-
tion method and an objective function upon which this optimizer 
operates. For xSPECT, we chose the 
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counts at pixel i, equal to the forward projected noiseless mean of the data im  plus 

Poisson noise in  

     ii i id m n= + ∀  . (2) 

 

As the noiseless mean im is not accessible, we construct a model im to estimate the im  

from the data using an image estimate Iα .  

The model of estimated detection events is equal to 

     ii im H Iα α
α

= ∀∑   .  (3) 

Iα represents the functional activity concentration, in units Bq/ml. Here, α  stands for all 

the variables that characterize the functional activity: 3D position, time, and photon 
energy.  In practice, α  is discretized into 3D voxels subdivided into time and energy 
bins.  We refer to α  generically as a “voxel” index, despite these additional time and 
energy components. Here each iH α  represents one element of the system matrix H, 

corresponding to the probability that a photon originating at 3D voxel α  is detected at 
the i-th 2D detector element. The contribution of scattered photons is  to the data model 

is estimated separately and must be added to the algorithm. Eq. (3) thus becomes 

     ii i im H I sα α
α

= + ∀∑   . (4) 

The system matrix H is rarely applied directly as a matrix multiplication and is 

implemented instead via the serial application of operators Hk, as follows: 

2 1...kH H H H= ⊗ ⊗ ⊗  .       (5) 

The adjoint of the forward projection, representing the backward projection from the 

data space into object space, may be described as an application of the transpose HT of 

the system matrix, alternatively expressed in the following equation:  

i i
i

I H mα α=∑ .                      (6) 

The transpose HT is also rarely applied as a matrix multiplication.  Instead, it is similarly 

represented as a product of operators: 

1 2 ...T T T T
kH H H H= ⊗ ⊗ ⊗     (7) 

 
xSPECT uses the conjugate gradient minimization scheme to minimize the 2

γχ  merit 

function. For more details on this method, see, e.g., Press et al, 2007 [18]. The use of 
the conjugate gradient in SPECT reconstruction was discussed by Tsui et al in 1991 [19].  
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corresponding to the probability that a photon originating at 3D voxel α  is detected at 
the i-th 2D detector element. The contribution of scattered photons is  to the data model 

is estimated separately and must be added to the algorithm. Eq. (3) thus becomes 
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implemented instead via the serial application of operators Hk, as follows: 
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xSPECT uses the conjugate gradient minimization scheme to minimize the 2

γχ  merit 

function. For more details on this method, see, e.g., Press et al, 2007 [18]. The use of 
the conjugate gradient in SPECT reconstruction was discussed by Tsui et al in 1991 [19].  
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To guard against image noise resulting from this fundamental pitfall and achieve 
interpretable images, we terminate the reconstruction early and apply post smoothing. 
Yet we accept that with this procedure we have resolution and noise characteristics that 
vary across the image due to the finite number of updates. Nevertheless, despite this 
drawback, this strategy is in clinical use because it produces visually pleasing results and 
allows for efficient compensation for the physics of the image formation process via 
procedures such as attenuation and scatter correction.   
 
 The ML-EM update mechanism is derived by maximizing the Poisson likelihood, yet the 
update formula itself is insensitive to the data statistics. For instance, simply scaling data 
by a constant factor has little effect on the ML-EM reconstruction, yet clearly the data is 
no longer Poisson. This insensitivity, even to a blatantly incorrect data alteration must 
come for a price.  
 
A typical ML-EM implementation uses a multiplicative update mechanism, where the 
update factor is positive, semidefinite, and essentially a ratio comparing the data and 
data model, which appears in the denominator.  In Flash3D, we limit the denominator to 
a minimum threshold, avoiding the division by zero or very small numbers and thus not 
allowing the ratio to become too large. The choice of this minimum threshold, in 
conjunction with the multiplicative update method, gives rise to an “evaporation” effect, 
wherein counts in regions of low activity gravitate towards regions of high activity. 
Lowering this threshold value will yield noisier images, and increasing the threshold will 
increase the evaporation effect. In practice, this compromise limits the low count 
application of Flash3D. 
 
We discuss this topic in the context of characterization of the xSPECT reconstruction in 
more detail, and demonstrate for instance the effect of count reduction on patient and 
phantom data in [16].   
 

The fundamentals of the xSPECT reconstruction platform 
 

Each iterative reconstruction algorithm consists of an optimization method and an 
objective function upon which this optimizer operates. For xSPECT, we chose the 2χ  as a 
merit function, which for Gaussian noise is quadratic in the data model and therefore 
has a linear gradient.  The problem with the traditional 2χ , however, is that the variance 
of Poisson counts is equal to its expectation value, rendering it again nonlinear and ill-
behaved in the low count regime.  Modified versions of the 2χ  have therefore been 

proposed by Mighell [17].  We use Mighell’s 2
γχ  merit function 

 ( ) ( )22 Min ,1 1i i i i
i

d d m dγχ = + − +  ∑ , (1) 

 

 merit function. For more details on this method, 
see, e.g., Press et al, 2007.18 The use of the conjugate gradient 
in SPECT reconstruction was discussed by Tsui et al in 1991.19

 
More details on the characteristic of the new reconstruction 
method can be found in reference 16.16

Improving the accuracy of the image  
formation model

In order to achieve quantitative accuracy and improve image 
quality, the system must be characterized accurately. As this 
process is generally computationally demanding, a further 
challenge is the incorporation of this information within the 
reconstruction in a computationally efficient manner to prevent 
excessive processing times.

As mentioned above, we use the conjugate gradient method, 
which is known to approach convergence* quadratically19 and 
requires fewer updates than MLEM, albeit at the cost of a corre-
spondingly more rapid pace of noise accumulation.

In order to mitigate this noise build-up, a number of steps were 
taken. The most fundamental is the aforementioned Mighell 
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merit function, which assumes Poisson data, and is therefore 
sensitive to noise statistics and accurately models them. With 
the sensitivity of this objective function in mind, it is important 
that the acquired data remain unaltered during reconstruction. 
For this reason, all operations during xSPECT reconstruction are 
performed on the image estimate, allowing the data itself to 
remain pristine.

A second component of noise mitigation is a more accurate 
system model. Inaccuracies in this model propagate with each 
forward- and back-projection throughout the entire reconstruc-
tion process and are potentially a major source of systematic 
errors. This property, when combined with the aforementioned 
sensitivity of the objective function, implies that such errors are 
critical to the state of reconstructed image quality and must be 
kept to a minimum.

The image formation model of xSPECT employs the following 
improvements:
i. �3D rotation and translation to incorporate the optically 

measured Gantry Deflection matrix for the Symbia family (class 
standard). This matrix is adapted to each specific system for 
further accuracy;

ii. �vector map characterizing the direction in which each colli-
mator hole points, which is either measured for each collimator 
(SMARTZOOM) or based on a class standard (LEHR);

iii. �3D distance-dependent Point Spread Response Function 
(PSRF) that is either measured for 99mTc over the entire FOV 
and includes the septal penetration response, or derived from 
the hole geometry in the case of SMARTZOOM (i.e., no longer 
Gaussian);

iv.	View-dependent decay correction;
v.	� Attenuation correction during both forward- and back-projection; 
vi.	�Energy window-based scatter correction, where a smoothed 

scatter projection estimate is added to the data model.

The previously used conversion from CT Hounsfeld units to a linear 
attenuation coefficient map is unchanged, and is based on our 
patented transformation method of adaptive bi-linear conver-
sion.20,21 Estimation of the scatter in the primary window is based 
on the work by Ichihara.22* �Convergence is perhaps too strong a word, as it implies that the absolute minimum  

(xSPECT), or maximum (MLEM) of the objective function in question is reached. In practice, 
convergence in this sense is intentionally avoided, as it would require an excessive number 
of iterations and would produce noisy, diagnostically useless images. Instead, a point of  
convergence is sought beyond which the diagnostic content of the image will cease to  
increase, but before the onset of degrading noise accumulation.
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A comparative summary of the key features of iterative reconstruction solutions used on the xSPECT Symbia Intevo is depicted in 
Figure 1:

Figure 1: Comparison of our iterative reconstruction solutions Flash3D, xSPECT platform and IQ•SPECT available on the Symbia Intevo. The color coding 

indicates either common components or highlights key features of the solution. The colors indicate common as well as specific components of the  

reconstruction technologies. For instance, xSPECT (orange) is a foundation platform, and thus its components are also present in xSPECT Bone (green)  

and xSPECT Quant (blue). The latter two have specific additional components highlighted with the respective color. IQSPECT (light red) has some specific 

components which are variants of xSPECT.

Reconstruction Method Flash3D xSPECT xSPECT Bone xSPECT Quant IQ●SPECT
Dicom Output Type NM RECON TOMO  NM RECON TOMO NM RECON TOMO or PET PET NM RECON TOMO

Output unit (Dicom Unit) counts (cnts) Bq/ml (propcps) Bq/ml (propcps or Bqml ) Bq/ml(Bqml) Bq/ml (cnts)

Post Smoothing 3D Gaussian 3D Gaussian zonal boundary preserving 3D 
Gaussian for each zone 3D Gaussian 3D Gaussian

Extra Modal Information (EMI) 
Method

linear combination with zonal 
Forward Projection

EMI Generation CT derived zones for 99mTc 
Di-Phosonate application. 

Scatter Compensation Optional: Additive in Forward Additive in Forward Projector Additive in Forward Projector Additive in Forward Projector Additive in Forward Projector
 Smoothing of SPE. Default: 0  Smoothing of SPE. Default:  Smoothing of SPE. Default:  Smoothing of SPE. Default:  Smoothing of SPE. Default: 0 

Attenuation Compensation 
Method

Optional: Voxel based in 
Forward/Backprojector

Optional: Voxel based in 
Forward/Backprojector

Voxel based in 
Forward/Backprojector

Voxel based in 
Forward/Backprojector

Optional: Voxel based in 
Forward/Backprojector

 Smoothing. Default: 0 mm  Smoothing. Default: 0 mm  Smoothing. Default: 0 mm  Smoothing. Default: 0 mm  Smoothing. Default: 0 mm

CT derived. Adaptive 
(patient, scan, energy 
window), bi linear conversion 
based on fit to reference 
materials. 

CT derived. Adaptive 
(patient, scan, energy 
window), bi linear conversion 
based on fit to reference 
materials. 

CT derived. Adaptive 
(patient, scan, energy 
window), bi linear conversion 
based on fit to reference 
materials. 

CT derived. Adaptive 
(patient, scan, energy 
window), bi linear conversion 
based on fit to reference 
materials. 

CT derived. Adaptive 
(patient, scan, energy 
window), bi linear conversion 
based on fit to reference 
materials. 

Resolution Recovery Method Forward/Backprojector Forward/Backprojector Forward/Backprojector Forward/Backprojector Forward/Backprojector
Depth Dependent based on 

measured ROR
Depth Dependent based on 

measured ROR
Depth Dependent based on 

measured ROR
Depth Dependent based on 

measured ROR
Depth Dependent based on 

measured ROR
3D Gaussian.FWHM adjusted 

for Septal Penetration

Acquisition window specific 
measured PSRF map over 

entire FOV

Acquisition window specific 
measured PSRF map over 

entire FOV

Acquisition window specific 
measured PSRF map over 

entire FOV

3D geometric hole model 
convolved with intrisinsic 

resolution

Collimator Vector Map
N/A LEHR Class standard LEHR Class standard LEHR Class standard

Measured 3D individual 
SMARTZOOM "Vectormap 

fingerprint"

Supported collimators UHR,LEHR, LEAP,MELP, HE, 
UHE, LPHR* LEHR LEHR LEHR SMARTZOOM

Detetctor Motion correction 
method

Data space correction using 
Multi Head Registration 

(MHR) data

Image space compensation 
using optical motion tracking 

for each detector in 6D

Image space compensation 
using optical motion tracking 

for each detector in 6D

Image space compensation 
using optical motion tracking 

for each detector in 6D

Image space compensation 
using optical motion tracking 

for each detector in 6D
Rotation model 2D 3D 3D 3D 3D

Detector motion 
characterization N/A

Adaptive system specific 
measured 4x4 Gantry 

Deflection Matrix

Adaptive system specific 
measured 4x4 Gantry 

Deflection Matrix

Adaptive system specific 
measured 4x4 Gantry 

Deflection Matrix

Class Standard for collimator 
& configuration measured 

4x4 Gantry Deflection Matrix

Sensitivity N/A Default Sensitivity Calibration Default or System specific 
sensitivity calibration

System specific sensitivity 
calibration N/A

Calibration Source N/A N/A
99mTc or 57Co Calibrated 
Sensitivty Source (CSS)

99mTc or 57Co Calibrated 
Sensitivty Source (CSS)

N/A

Uniformity N/A Uniformity Correction Uniformity Correction Uniformity Correction Uniformity Correction
Radius-of-Rotation Encoders for each detector Encoders for each detector Encoders for each detector Encoders for each detector Encoders for each detector

OSEM OSCGM OSCGM OSCGM OSCGM
(Ordered Subset Expectation Ordered Subset Conjugate Ordered Subset Conjugate Ordered Subset Conjugate Ordered Subset Conjugate 

Optimization Method Expectation Maximization 
(EM)

Pre conditioned Conjugate 
Gradient

Pre conditioned Conjugate 
Gradient

Pre conditioned Conjugate 
Gradient

Pre conditioned Conjugate 
Gradient

Merit Function Maximum Likelihood (ML) Mighell's χM
2 Mighell's χM

2 Mighell's χM
2 Mighell's χM

2

Matrix Size 128 (default), 256 (optional) 128 (optional), 256 (default) 256 128 (optional), 256 (default) 128

Frame Of Reference SPECT CT CT CT SPECT

Data Corrections NaI, Energy&Lineraity (ZLC), 
Uniformity, MHR NaI, ZLC NaI, ZLC NaI, ZLC NaI, ZLC

Dicom Input Type Tomo Tomo Tomo Tomo Tomo

Siemens © 2013

Linear Attenuation Coeffcient 
(LAC) or "mu-map" 

Generation

PSRF Model

Reconstruction method

Siemens Symbia Intevo Reconstruction Solution Comparison

N/A N/A

Energy Window based per 
peak (DEW or TEW).

Energy Window based per 
peak (DEW or TEW).

Energy Window based per 
peak (DEW or TEW).

Energy Window based per 
peak (DEW or TEW).

Energy Window based per 
peak (DEW or TEW).

Scatter Projection Estimate 
(SPE)

N/A N/A
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xSPECT reconstruction is very similar to the IQ•SPECT recon-
struction method23, albeit with a few key differences that will be 
discussed below. Fundamentally, xSPECT operates in the CT Frame-
of-Reference (FOR), whereas IQ•SPECT operates in the SPECT FOR.  
In the IQ•SPECT reconstruction, we rely on the geometric design 
of the tapered hexagonal holes of the SMARTZOOM collimator 
to compute the collimator’s point response function. This is then 
convolved with a Gaussian representing the intrinsic resolution to 
yield a geometric PSRF. For the xSPECT system model, however, 
we have actually measured the 3D PSRF of our AUTOFORM® 
LEHR collimator (Figure 2) over the entire FOV across all relevant 
imaging distances. The high quality of each AUTOFORM LEHR has 
been verified to provide an angulation error at each collimator 
bore of only ±0.05º (RMS), which necessitates that such measure-
ment is to be done at one location only (center).

As mentioned above, one key difference between xSPECT and 
Flash3D (OSEM3D) is the former’s faster convergence speed for 
extended sources (quadratic for CG versus log-linear for MLEM), 

Figure 2: Measured PSRF of a Tc-99m point source for a Siemens AUTOFORM LEHR collimator stretching over the entire detector FOV and varying distances. 

This data is used to construct the measured PSRF and used inside the xSPECT reconstruction

providing faster resolution and emission recovery at the expense 
of accelerated noise accumulation. As a result, the number of 
necessary updates in CG will generally be lower than those for an 
OSEM3D reconstruction. As a default, we recommend 48 updates 
and 1 subset, but the number of updates must be reduced for 
very low count data. We discuss the characteristics at various 
updates and count conditions and show the slower than MLEM 
convergence for point sources in air in reference 16.16

Another difference between xSPECT and Flash3D is the noise struc-
ture, which appears to be more mottled and correlated, particu-
larly in background and soft tissue regions. This is a somewhat 
different effect than that seen in Flash3D, where the background 
noise typically seems a bit smoother and may even appear to 
evaporate. Our clinical collaboration partners noted a difference 
in the noise structure, but it was judged not clinically relevant for 
the clinical read of the images (Figure 25).
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The impact of improvements in the image formation model, as 
well as the use of a different reconstruction engine, can be visual-
ized in the reconstructions of phantom data. The images** below 
(Figure 3, Figure 4) of the Data Spectrum Cylinder phantom with 

hot and cold rod inserts allow for a comparison between a Flash3D 
and an xSPECT reconstruction. For xSPECT, the cold rods have a 
higher contrast, and the hot rods are also better resolved, yet the 
background seems a bit noisier than for Flash3D.

Figure 3: Data Spectrum, Deluxe  

hot and cold rod inserts (cold).  

Top row: Flash3D. Bottom row: 

xSPECT reconstruction below.  

Both methods are attenuation  

and scatter corrected (display from 

research workstation).

Figure 4: Data Spectrum, Deluxe 

hot and cold rod inserts (hot).  

Top row: Flash3D. Bottom row: 

xSPECT reconstruction below.  

Both methods are attenuation  

and scatter corrected (display from 

research workstation).

** �The images are displayed using our research Clinical Visualization Research Tool (CVRT), which allows for three-way fusion, hence the pair of blending bars with three 
color table selectors on the right side of the display. The CVRT also contains basic VOI analysis tools and is only available for our research collaboration partners.
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The First Application: xSPECT Bone

The concept of context-sensitive reconstruction

Using the xSPECT engine described above as a foundation, a new 
reconstruction method was developed by Siemens and applied 
to 99mTc diphosphonate Bone SPECT studies. An overview of 
the typical image quality currently available in bone imaging is 
given by Evan-Sapir.24 We seek to improve on the image quality 
of SPECT using the available information from the CT in tandem 
with the knowledge that disphosphonate is taken up by tissues 
experiencing high rates of bone turnover.25 Thus, it is reason-
able to define zones that distinguish bone from non-bone in the 
reconstruction.

In the case of xSPECT Bone, CT data is not only used for attenu-
ation correction, but also to delineate tissue boundaries. This 
is achieved by first converting the transaxial CT data to a linear 
attenuation map.26 Based on the linear attenuation coefficients at 
140 keV, five tissue classes (“zones”)*** are defined: air and lung, 
adipose, soft tissue, soft bone and cortical bone. The transition 
between these zones is smooth, representing a soft segmenta-
tion. All reconstruction voxels thus are labeled with an index that 
determines the zone class. Voxels within a particular zone class 
are forward projected as a group, but remain distinct from other 
zone classes and are handled separately in the projection space. 
The basic iterative reconstruction method is described above, and 
the following is a description detailing the incorporation of the 
contextual information.

Implementing extra-modal information  
into the reconstruction

The process begins by adapting the forward projection to the 
multizone situation and applying the forward operation separately 
to each zone’s specific image object separately. The zonal forward 
projections, therefore, consider the contribution of each zone 
to the image model separately. Specifically, the zonal forward 
projections use the zone-masks 
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space. The basic iterative reconstruction method is described above, and the following is 
a description detailing the incorporation of the contextual information. 
 

Implementing Extra-Modal Information into the reconstruction
 
The process begins by adapting the forward projection to the multizone situation and, 
applying the forward operation separately to each zone’s specific image object 
separately.  The zonal forward projections therefore consider the contribution of each 
zone to the image model separately.  Specifically, the zonal forward projections use the 
zone-masks ( )nzα  to define the class-specific contribution.  Any stray values that the zonal 

image object may have received at object points outside its specific zone due to the 
update operation are multiplied by zero or other value according to the value of the 
corresponding zone-function at that point.  Thus, each of the resulting zonal data 
models ( )n

im  can be described by 

 
( ) ( ) ( )n n n
i im H z I nα α α

α

= ∀∑ .      (8) 

 
The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
i i i

n
m m s= +∑ .        (9) 

 
The non-negative scaling factors cn influence the data model via the scaling of the zonal 
image objects ( )nIα  as follows: 

( ) ( )      0     n n
n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
im : 

( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
( )n

i i i
n

m m s= +∑ , as follows: 

( )nscaled
i n i i

n
m c m s= +∑ .  (12) 

 
The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

 to define the class-specific 
contribution. Any stray values that the zonal image object may 
have received at object points outside its specific zone due to the 
update operation are multiplied by zero or other value according to 
the value of the corresponding zone-function at that point. Thus,  
each of the resulting zonal data models 
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The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
i i i

n
m m s= +∑ .        (9) 

 
The non-negative scaling factors cn influence the data model via the scaling of the zonal 
image objects ( )nIα  as follows: 

( ) ( )      0     n n
n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
im : 

( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
( )n

i i i
n

m m s= +∑ , as follows: 

( )nscaled
i n i i

n
m c m s= +∑ .  (12) 

 
The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

	

(8)

 The total data model mi is represented by a sum of the zonal data 
models, plus a scatter estimate:
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The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
i i i

n
m m s= +∑ .        (9) 

 
The non-negative scaling factors cn influence the data model via the scaling of the zonal 
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n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
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( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
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i i i
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m m s= +∑ , as follows: 
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The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
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(9) 

The non-negative scaling factors can influence the data model via 
the scaling of the zonal image objects 
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( ) ( )n n
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The scaled total data model scaled
im , as generated by the zonal forward projection 
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The merit function is optimized for the scaling factors cn, which, in general, is an 
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zonal renormalization process includes an optimized scaling factor c'n for each zonal 
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as follows: 
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The non-negative scaling factors cn influence the data model via the scaling of the zonal 
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This leads to a corresponding scaling of the zonal data models ( )n
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( ) ( )n n
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The scaled total data model scaled
im , as generated by the zonal forward projection 
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m m s= +∑ , as follows: 

( )nscaled
i n i i
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The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

	

(10)

This leads to a corresponding scaling of the zonal data models 
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image object may have received at object points outside its specific zone due to the 
update operation are multiplied by zero or other value according to the value of the 
corresponding zone-function at that point.  Thus, each of the resulting zonal data 
models ( )n

im  can be described by 

 
( ) ( ) ( )n n n
i im H z I nα α α
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= ∀∑ .      (8) 

 
The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
i i i
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m m s= +∑ .        (9) 

 
The non-negative scaling factors cn influence the data model via the scaling of the zonal 
image objects ( )nIα  as follows: 

( ) ( )      0     n n
n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
im : 

( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
( )n

i i i
n

m m s= +∑ , as follows: 

( )nscaled
i n i i
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The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

:
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i im H z I nα α α
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The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
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The non-negative scaling factors cn influence the data model via the scaling of the zonal 
image objects ( )nIα  as follows: 

( ) ( )      0     n n
n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
im : 

( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
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i i i
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m m s= +∑ , as follows: 

( )nscaled
i n i i
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The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

	

(11)

The scaled total data model mscaled 
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( ) ( ) ( )n n n
i im H z I nα α α

α
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The total data model mi is represented by a sum of the zonal data models, plus a scatter 
estimate: 

( )n
i i i
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m m s= +∑ .        (9) 

 
The non-negative scaling factors cn influence the data model via the scaling of the zonal 
image objects ( )nIα  as follows: 

( ) ( )      0     n n
n nI c I c nα α→ ≥ ∀       (10) 

This leads to a corresponding scaling of the zonal data models ( )n
im : 

( ) ( )n n
i n im c m n→ ∀ .   (11) 

The scaled total data model scaled
im , as generated by the zonal forward projection 

including scaling and scattering correction, is given by modifying the sum in 
( )n

i i i
n

m m s= +∑ , as follows: 

( )nscaled
i n i i

n
m c m s= +∑ .  (12) 

 
The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
image object ( )nIα .   

, as generated by the 
zonal forward projection including scaling and scattering correc-
tion, is given by modifying the sum in 
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(12)

The merit function is optimized for the scaling factors cn, which, 
in general, is an optimization of only a few parameters (e.g., the 
N scaling factors cn). The output of the zonal renormalization 
process includes an optimized scaling factor c’n for each zonal 
image object
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The merit function is optimized for the scaling factors cn, which, in general, is an 
optimization of only few parameters (e.g., the N scaling factors cn). The output of the 
zonal renormalization process includes an optimized scaling factor c'n for each zonal 
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Generation of the zone map for the  
99mTc Di-Phosphonate application

The “zone map” is the result of a voxel-by-voxel conversion of the 
CT image to the discrete tissue classes. In our work, we deter-
mined that five tissue classes: cortical bone, soft bone, soft tissue, 
adipose and lung tissue yield the best clinical impression. The tran-
sition from one tissue class to another tissue class is smooth and 
given by a polynomial of the third order, symmetric at the midway 
point in between the tissue boundaries. The conversion is done 
via an intermediate step of converting the CT image to a linear 
attenuation coefficient volume at a fixed reference energy of 140 
keV using our patented adaptive HU-to-LAC conversion method. 
This step is needed to reduce inconsistent zone boundaries, intro-
duced by the inherent variability of the HU determination of bone  
tissue, which otherwise could impact xSPECT Bone image quality. 
The reference tissues used are available from Gammex, Inc.
 
The algorithm† can be summarized as follows:
1.	� For each zone, multiply the (single) image by the zonal weights 

of the voxels to create a zonal image.
2.	 Forward project the zonal image to create a zonal data model.
3.	� The combined data model is a linear combination of the zonal 

data models with coefficients cn.
4.	 Set each cn such that 
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To guard against image noise resulting from this fundamental pitfall and achieve 
interpretable images, we terminate the reconstruction early and apply post smoothing. 
Yet we accept that with this procedure we have resolution and noise characteristics that 
vary across the image due to the finite number of updates. Nevertheless, despite this 
drawback, this strategy is in clinical use because it produces visually pleasing results and 
allows for efficient compensation for the physics of the image formation process via 
procedures such as attenuation and scatter correction.   
 
 The ML-EM update mechanism is derived by maximizing the Poisson likelihood, yet the 
update formula itself is insensitive to the data statistics. For instance, simply scaling data 
by a constant factor has little effect on the ML-EM reconstruction, yet clearly the data is 
no longer Poisson. This insensitivity, even to a blatantly incorrect data alteration must 
come for a price.  
 
A typical ML-EM implementation uses a multiplicative update mechanism, where the 
update factor is positive, semidefinite, and essentially a ratio comparing the data and 
data model, which appears in the denominator.  In Flash3D, we limit the denominator to 
a minimum threshold, avoiding the division by zero or very small numbers and thus not 
allowing the ratio to become too large. The choice of this minimum threshold, in 
conjunction with the multiplicative update method, gives rise to an “evaporation” effect, 
wherein counts in regions of low activity gravitate towards regions of high activity. 
Lowering this threshold value will yield noisier images, and increasing the threshold will 
increase the evaporation effect. In practice, this compromise limits the low count 
application of Flash3D. 
 
We discuss this topic in the context of characterization of the xSPECT reconstruction in 
more detail, and demonstrate for instance the effect of count reduction on patient and 
phantom data in [16].   
 

The fundamentals of the xSPECT reconstruction platform 
 

Each iterative reconstruction algorithm consists of an optimization method and an 
objective function upon which this optimizer operates. For xSPECT, we chose the 2χ  as a 
merit function, which for Gaussian noise is quadratic in the data model and therefore 
has a linear gradient.  The problem with the traditional 2χ , however, is that the variance 
of Poisson counts is equal to its expectation value, rendering it again nonlinear and ill-
behaved in the low count regime.  Modified versions of the 2χ  have therefore been 

proposed by Mighell [17].  We use Mighell’s 2
γχ  merit function 

 ( ) ( )22 Min ,1 1i i i i
i

d d m dγχ = + − +  ∑ , (1) 

 

 is minimized.
5.	� If a cn <0, set the most negative one to zero and repeat step 4 

keeping it fixed at zero. Continue until there are no negative 
coefficients. (This step is what prevents the use of the method 
in conjunction with EM.)

6.	� Set the data model to the linear combination with the cn 
determined in steps 4 and 5.

7.	� Reset the image to a linear combination of the zonal images 
with the same cn.

8.	� The image and the data model have now been changed consis-
tently (due to the linearity of the forward projection). Discard 
the zonal images, data models and zonal coefficients cn.

9.	� Update the image using the back projection without regard 
to zones.

If the stopping criterion has not been reached, repeat steps 1-9 for 
the next update. Otherwise, terminate the reconstruction.

*** Zones are an example of Extra-Modal Information (“EMI”) extracted from the CT. † US patents pending.
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Figure 5 illustrates the concept graphically. As usual, early 
stopping of the iterations in tandem with post smoothing acts 
as a type of smoothness regularization. Simple post smoothing 
would, however, blur the zonal boundaries. Thus, we employ an 
edge-preserving filter, which maintains crisp zonal boundaries 
and only smooths within them. Each zone can thus be smoothed 
independently. We chose a 3D Gaussian and smooth bone zones 
at half the FWHM of the non-bone zones. In Figure 6, we show 
that the CT reconstructed data is used without degradation and 
for both the attenuation map and the zonal map.

Figure 6: xSPECT Bone. Use of CT 

data to generate an attenuation 

map, as well as a zone map  

(display from research  

workstation).

Date courtesy of University of  

Minnesota, Minneapolis,  

Minnesota, USA.

Figure 5: Multi-modal reconstruction with zonal weights.

	
  

Please note that this approach is different from using a Bayesian 
model that incorporates anatomical priors derived from a CT 
in the reconstruction of functional emission imaging.27-31 For 
reconstruction algorithms employing a Maximization of the A 
Posteriori probability (MAP) approach, one can incorporate a prior 
distribution to produce an a posteriori probability distribution 
conditioned on the data. xSPECT neither assigns probabilities, 
nor does it make assumptions regarding where and how much 
the activity concentration should be.
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Another approach by Calvini uses the CG method to enhance 
SPECT data by MR solving a “shifted” problem, whereby the MR 
signal of low spatial frequency is replaced by the SPECT projector-
backprojector operator.32 This is also different from the method 
employed by xSPECT, which is driven by the emission data and 
whose solution is consistent with this data.

Testing the concept: probing the obvious  
pitfalls with phantoms

Examples of the image quality can be assessed in the following 
figures, which demonstrate a few key differences compared to 
conventional current state-of-the-art iterative SPECT reconstruc-
tion (Flash3D).7

Using a set of null-experiments, we can demonstrate that the 
context based xSPECT reconstruction:
a.	� does not show significant false correlations between uptake 

and HU values†;
b.	� does not spread or shift the activity centers for deep seated 

lesions.

In one case, the activity within two different zones (differentiated 
by different densities) is essentially the same, and in the other case 
the density concentration is the same, but the activity concentra-
tion is different.

We use, for all our tests described here, phantoms from Data 
Spectrum, Hillsborough, NC, USA; please refer to the vendor for 
detailed product information.

For the purpose of testing (a) above, we filled the set of six hollow 
spheres (0.5 ml- 16ml) in a warm background (flangeless cylinder) 
with following quantitative loading at the start of the scan (Figure 
7): Cylinder - 63 kBq/ml, and Sphere-set - 60 kBq/ml, yielding a 
60:63 contrast. CT contrast was added to spheres so that the inner 
LAC-values were 0.194 cm-1.

Figure 7: Null experiment using Data Spectrum sphere inserts: Top row: Flash3D (Sphere : Cylinder = 60:63 contrast) . Bottom row: CT images. Contrast 

adjusted to 0.194 cm-1 (display from research workstation).

† It should be noted that such a correlation is dependent on the volume of interest and a host of other variables.
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In Figure 8 we see the results of this experiment, with Flash3D 
on the top row and the xSPECT context reconstruction on the 
bottom. The Flash3D reconstruction appears as a more or less 
homogeneous phantom due to the true low contrast between 
spheres and background. Similarly, in the xSPECT case, the experi-

ment shows (statistically) the same uptake in the spheres as in 
the background. A trace of the sphere shell is visible, mainly due 
to the fact the forward projection of voxels inside the spheres and 
outside the spheres is done separately.

Figure 8: Null experiment using 

Data Spectrum’s hollow sphere  

set: Top row: Flash3D (Sphere: 

Cylinder = 60:63 contrast). Bottom 

row: xSPECT’s reconstruction with 

zonal information (context). A  

trace of the boundary region is  

still visible, but the contrast is  

reproduced, and the null experi-

ment passed (display from  

research workstation).

Figure 9: Concentric spheres of 

2 different sizes inside a cylinder 

(Data Spectrum). Top row: CT.  

Bottom row: xSPECT’s reconstruc-

tion without zonal information.  

The lack of activity at the base  

of the large  sphere is visible,  

as that base is solid plastic. Both 

methods are attenuation and  

scatter corrected (display from  

research workstation).
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For the second null experiment (Figure 9, Figure 10, Figure 11 ), 
we set up two sets of concentric spheres with the same density 
contrast, but loaded the inner sphere such that it had a higher 
activity concentration than the shell sphere:
1.	Cylinder - 58.9 kBq/ml.
2.	� Large sphere shell (70 cc volume) - 57.7 kBq/ml and core (20 

cc volume) - 228.5 kBq/ml.

3.	� Small sphere shell (volume 12 cc) - 57.7 kBq/ml and core (5.5 
cc volume) - 121 kBq/ml.

4.	� CT contrast added to water inside spheres such that their 
mu-values were 0.172 cm-1, same as acrylic plastic.

Figure 10: Concentric spheres of 

2 different sizes inside a cylinder 

(Data Spectrum). Top row: Flash3D. 

Bottom row: xSPECT’s reconstruction 

without zonal information. The 

lack of activity at the base of the 

large sphere is visible, as that base 

is solid plastic. Both methods are 

attenuation and scatter corrected 

(display from research workstation).

Figure 11: Concentric spheres of 

2 different sizes inside a cylinder 

(Data Spectrum). Top row: xSPECT 

reconstruction with zonal infor

mation (context). Bottom row: 

xSPECT’s reconstruction without  

zonal information. The lack of  

activity at the base of the large 

sphere is visible, as that base is  

solid plastic. Both methods are  

attenuation and scatter corrected 

(display from research workstation).
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Figure 12 and Figure 13 show Data Spectrum’s hot and cold rod 
insert (Deluxe) using the xSPECT reconstruction with context 
information compared to without.

Figure 13: Data Spectrum, Deluxe 

hot and cold rod inserts (hot). Top 

row: xSPECT reconstruction zonal 

information. Bottom row: xSPECT’s 

reconstruction without zonal  

information. Both methods are  

attenuation and scatter corrected 

(display from research workstation).

Figure 12: Data Spectrum, Deluxe 

hot and cold rod inserts (cold). Top 

row: xSPECT reconstruction zonal 

information. Bottom row: xSPECT’s 

reconstruction without zonal infor-

mation. The zones are adjusted  

to separate plastic from water.  

Both methods are attenuation and  

scatter corrected (display from  

research workstation).
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Testing the concept: clinical feasibility

Figure 14 and Figure 15 show a clinical example to demonstrate 
the image quality on patient data. The female patient with breast 
carcinoma was referred to a bone scan and worked up under the 
site’s clinical protocol. This patient was injected with 925 MBq of 
99mTc-MDP, and imaged about 3h later in 360 degree SPECT scan 
with 120 views. The scan was performed on a Symbia T6 using the 
VA63A software version*†. VA63A is able to deliver both clinical 
framed projections, as well as list mode data for research purposes. 

The clinical data was processed with clinically used methods only, 
and the list mode data with a prototype of xSPECT Bone. Due to site 
regulations and IRB requirements, we maintain a strict separation 
of clinical and research data. The data is anonymized, and sent to 
an Advanced Research Reconstruction Computer (ARC) on-site, 
which is also linked to a dedicated site “clone” ARC at the factory. 
Only anonymized data is transferred from the site to the factory, 
the site maintains the key, as well as back-up.

*† VA63A is only for clinical collaborators, and not for sale.

Figure 14: Top row: Flash3D  

reconstruction using attenuation 

and scatter correction. Bottom row: 

xSPECT Bone of the same data.  

(display from research workstation)

Data courtesy of University  

of Minnesota, Minneapolis,  

Minnesota, USA. 

Figure 15: Top row: Context  

based reconstruction xSPECT Bone. 

Bottom row: CT image. (display 

from research workstation)

Data courtesy of University  

of Minnesota, Minneapolis,  

Minnesota, USA. 
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above (VA63A). As with the previous example, the clinical data 
was processed with existing methods (i.e., Flash3D with CT and 
attenuation correction and scatter correction), while the list mode 
data was reconstructed using a prototype of xSPECT Bone (Data 
courtesy of Johns Hopkins University, Baltimore, Maryland, USA). 

Figure 16 and Figure 17 show a further clinical example. A 
74-year-old male with primary indication of adenocarcinoma 
of the prostate was injected with 925 MBq of 99mTc-MDP,  and 
worked-up under the site’s clinical protocol. The scan was 
performed on a Symbia T16 with the same software described 

Figure 17: Top row: Context based reconstruc-

tion xSPECT Bone. Bottom row: CT image.  

(display from research workstation)

Data courtesy of Johns Hopkins University,  

Baltimore, Maryland, USA.

Figure 16: Top row: Flash3D reconstruction 

using attenuation and scatter correction.  

Bottom Row: xSPECT Bone reconstruction  

of the same data. (display from research  

workstation)

Data courtesy of Johns Hopkins University,  

Baltimore, Maryland, USA. 
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The image quality is improved in the xSPECT Bone images. In 
particular, resolution†† appears higher. However, it has to be 
stressed that this is a multi-resolution image owing to the truly 
multi-modal nature of the reconstruction. The resolution is not 
determined by a single modality, but is an amalgamation of the 
resolutions of both. Boundaries of different tissue classes are well 
resolved, as they are delineated with the sharp resolution of the CT 
and exhibit a greater resolution than that offered by the nuclear 
PSRF alone. The interior of each tissue class, however, shows a 
resolution similar to conventional nuclear reconstruction.

The aforementioned edge-preserving post-smoothing method 
helps maintain these boundary characteristics even after post 
smoothing by handling each zone separately. In this case, bone 
zones are smoothed with a 5mm FWHM 3D Gaussian, whereas all 
other zones (i.e., soft tissue) are smoothed with 10 mm, roughly 
corresponding to the matched filter of the PSRF at the average 
radius-of-rotation and is equivalent to the classical choice of post-
smoothing kernel size.

Clinical evaluations of xSPECT Bone

It has been shown that SPECT fused with CT has improved sensi-
tivity, equal or improved specificity for differentiation of benign 
and malignant focal bone lesions in the axial skeleton with 82% 
and 94% for planar scintigraphy, 91% and 94% for SPECT, 100% 
and 100% for SPECT fused with CT.33 Even-Sapir et al. shows an 
improvement of sensitivity, specificity, negative and positive 
predictive values of SPECT/CT over planar imaging in high-risk 
prostate carcinoma patients.34 Despite these high clinical values 
of SPECT/CT, there is still improvement possible, and we propose 
the use of context-based reconstruction to further improve the 
clinical application.

The new method described above was refined over several years 
based on feedback from various luminary sites. The readers took 
advantage of their respective patient populations and assessed 
image quality across various software updates as well as prefer-
ences for the parameter ranges used when fine-tuning the recon-
struction. Throughout this collaboration, we used a 2-alternate 
force choice method and designed a research tool to examine the 
comparative image evaluation. A brief summary of the method 
and results are presented at the SNMMI 2013.35 Ultimately, these 
results are the basis for the final version of the reconstruction 
method and recommended parameter ranges in the product.

Concordance evaluation

During the more recent stages of the collaboration, we designed 
experiments to evaluate potential clinical benefits. The study 
was designed in two phases: pilot and full evaluation. The goal 
of pilot study is to help in the design of the full evaluation and 
to assess image quality and clinical acceptance of xSPECT Bone 
among experienced readers relative to Flash3D (Flash3D), which 
is currently in clinical use. The full evaluation will commence in 
the summer of 2013, and results will be available once completed.

The goal of the pilot study was to probe the three aims listed 
below:

Aim 1: Concordance among readers regarding general impression 
of disease. 
Aim 2: Quantify differences in image quality of Flash3D and 
xSPECT Bone.
Aim 3: Lesion-based scoring for statistical analysis of reader 
concordance

We present here only a brief summary of Aim 2.

All data were acquired on Symbia T series in dual mode (using 
VA63A to provide clinical and NM list mode data) setting under 
approved Institution Review Board (IRB) at the participating sites. 
From a pool of patient data that was not used in any prior research 
assessment, we obtained patients who had undergone both thorax 
and abdomen SPECT exams, resulting in 9 patients (3 male) from 
4 different sites (2 sites in the US and 2 sites in Germany), each 
with slightly different protocols and patient populations. The data 
ranged in total counts from 4.8 Mc to 11 Mc for the thorax scan 
and from 2.5 Mc to 11 Mc for the abdomen scan. The injected 
tracer was either MDP (US) or DPD (Germany).

SPECT images of the chest were reconstructed with Flash3D, and 
the prototype of xSPECT Bone, both to obtain best possible image 
quality. Both methods included 3D resolution recovery (albeit with 
different PSRF models), attenuation and scatter corrections. In 
addition, xSPECT Bone incorporated CT information to delineate 
tissue boundaries during image reconstruction. The Flash3D and 
xSPECT images were presented to ten experienced readers in 
random order. Both SPECT scans were displayed together with 
the corresponding whole body planar and MIP (Maximum Intensity 
Projection) images.
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importance, resolution w.r.t. diagnostic importance, diagnostic 
utility, and clinical acceptance. Questions Q8-Q11 prompt the 
readers to subjectively assess their impressions (“gut feel”) on 
clinical benefits, such as specificity.

The readers were asked to respond to 13 questions (Figure 18) 
on a 5 point scale, where a lower number is more favorable from 
the patient point of view. The questions Q1-Q6, Q12, and Q13 
probe aspects relating to image quality: noise w.r.t. diagnostic 

First, we analyze the responses by averaging over the ten readers 
using a Bland-Altman analysis. Then we pairwise compare the 
responses of all readers, using an intra-class correlation coefficient 
(ICC) of the concordance performed according to Shrout et al.36 

for all questions. Please note that on the 5 point scale, a smaller 
number represents a superior score. Questions 8-12 also allow for 
a value of 6 to indicate a degradation in image quality.

For Questions 1-4, 12 and 13 (blue gray in Figure 18) we present a 
Bland-Altman analysis of the scores showing an average improve-
ment for xSPECT Bone of 0.8 compared to Flash3D (Figure 19), 
with a ∆Median(M)=0.75, Negative ranks of 46, positive ranks 
of 8, and Z=5.248, p<0.0001,paired Wilcoxon (W) (Figure 20).

Figure 18: Questions and scores of the AIM2 image evaluation. Q1-Q4, Q12,Q13 are highlighted and its results presented below.

AIM2: Quantify differences in image quality of F3D and A3D Scores

Question 1: Please rate your general impression of the noise: 1: minimal – 5: severe (not useable for a read);

Question 2:
Please rate your general impression of the diagnostic importance of 
the noise

1: insignificant – 5: significant (not useable for a read);

Question 3: Please rate your general impression of the image resolution? 1: excellent – 5: poor (not useable for a read);

Question 4:
Please rate your general impression of the diagnostic  
importance of the image resolution

1: significant – 5: insignificant;

Question 5: How many distinct artifact classes  do you see? 1: 0, 2: 1-2,3: 3-5,4: 6-9,5: 10+;

Question 6:
Please rate your general impression of the diagnostic  
importance of these artifact classes:

1: irrelevant – 5: relevant;

Question 7:
How many artifact classes do you see that are diagnostically  
disturbing or causing concern?

1: 0, 2: 1-2,3: 3-5,4: 6-9,5: 10+;

Question 8:
In your estimate, please rate your impression of increase in lesion  
detection specificity compared to Planar/Wholebody:

1: very significant – 5: insignificant; 6: Decrease

Question 9:
In your estimate, please rate your impression of increase in lesion  
detection sensitivity compared to Planar/Wholebody:

1: very significant – 5: insignificant; 6: Decrease

Question 10:
In your estimate, please rate your impression of increase in lesion 
conspicuity compared to Planar/Wholebody:

1: very significant – 5: insignificant; 6: Decrease

Question 11:
In your estimate, please rate your impression of increase in your  
diagnostic confidence compared to Planar/Wholebody:

1: very significant – 5: insignificant; 6: Decrease

Question 12:
Please rate your impression of diagnostic utility of the image as  
presented & compared to your clinical practice:

1: High – 5: Minimal; 6: Detrimental

Question 13:
SPECT images only: Overall, do you accept the image and would  
you use it in your clinical practice?

1: strong yes, 2:yes, 3:equivocal, 4:no, 5:strong no
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Figure 19: Bland-Altman Analysis between xSPECT Bone and Flash3D, showing a significant improvement of reader response  

score over all readers and studies.

Figure 20: Summary of the Wilcoxon test of all data of the Chest read.
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Figure 19: Bland-Altman Analysis between xSPECT Bone and Flash3D, showing a significant improvement 
of reader response score over all readers and studies. 
 
xSPECT Bone images were ranked equivalent to or higher than Flash3D images in >85% 
of the cases. The strongest improvement over Flash3D was observed for the image 
resolution criterion, with ∆M=2.1, p=0.0039(W) and its corresponding diagnostic 
importance with ∆M=0.7, p=0.0039(W) (Figure 21). This was followed by diagnostic 
utility with ∆M=1.3, p=0.0039(W) and image acceptance with ∆M=0.9, p=0.0039(W) 
(Figure 22) . 

Negative Ranks Positive Ranks Z p
46 8 5.248

F3D xSPECT Bone Delta
N 54 54 0

Median 2.45 1.7 0.75
lowest 1.3 1.2
highest 4.1 2.7

95% CI Median min 2.23 1.60
95% CI Median max 2.80 1.87

<0.0001

Wilcoxon (all)

 
Figure 20: Summary of the Wilcoxon test of all data of the Chest read. 

xSPECT Bone images were ranked equivalent to or higher than 
Flash3D images in >85% of the cases. The strongest improvement 
over Flash3D was observed for the image resolution criterion, 
with ∆M=2.1, p=0.0039(W) and its corresponding diagnostic 
importance with ∆M=0.7, p=0.0039(W) (Figure 21). This was 
followed by diagnostic utility with ∆M=1.3, p=0.0039(W) and 

Wilcoxon (all)

Negative 
Ranks

Positive 
Ranks

Z p

46 8 5.248

<0.0001

F3D xSPECT Bone Delta

N 54 54 0

Median 2.45 1.7 0.75

lowest 1.3 1.2

highest 4.1 2.7

95% CI Median min 2.23 1.60

95% CI Median max 2.80 1.87
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as a “control” to test if the two methods alone perform significantly 
differently across different anatomical regions. This test resulted 
in a mean difference of 0.14 (+1.03 -0.74, 95%) and -0.04 (+0.91 
-0.98, 95%) between the thorax and abdomen for Flash3D and 
xSPECT, respectively. This shows that the obtained difference  
in the mean for the inter-method comparison may indicate  
that there is indeed a preference for xSPECT Bone, rather than 
potentially being confounded by a preference for a particular 
anatomical region.

image acceptance with ∆M=0.9, p=0.0039(W) (Figure 22) .
In contrast, question 1, assessing the noise in the image, results 
in a score difference ∆M=04, p=0.7344(W) with 5 negative and 
4 positive ranks, and thus is not considered significant.

In the next two figures (Figure 23 and Figure 24) we show the 
results of a Bland-Altman analysis for the average reader first on 
only the IQ questions, then for all questions. The intra-method 
comparison (i.e., comparing Flash3D or xSPECT Bone scores 
against itself for the thorax and abdomen regions) could serve 

Figure 21: Summary of the Wilcoxon test of Q3 “Please rate your general impression of the image resolution?” and Q4 “Please rate your general  

impression of the diagnostic importance of the image resolution”.

Figure 22: Summary of the Wilcoxon test of Q12 “Please rate your impression of diagnostic utility of the image as presented and compared to your clinical 

practice:” and Q13 “SPECT images only: Overall, do you accept the image and would you use it in your clinical practice?”

Wilcoxon (Resolution, Q3) Wilcoxon (DxImportance of Q3 finding, Q4)

Negative 
Ranks

Positive 
Ranks

Z p
Negative 
Ranks

Positive 
Ranks

Z p

9 0

0.0039

9 0

0.0039

F3D xSPECT Bone Delta F3D xSPECT Bone Delta

N 9 9 0 9 9 0

Median 3.6 1.5 2.1 2.4 1.7 0.7

lowest 3.2 1.2 2.1 1.3

highest 4.1 1.9 2.6 2.2

95% CI Median min 3.41 1.31 2.30 1.43

95% CI Median max 3.86 1.77 2.60 2.16

Wilcoxon (DxUtility, Q12) Wilcoxon (Clinical Acceptance, Q13)

Negative 
Ranks

Positive 
Ranks

Z p
Negative 
Ranks

Positive 
Ranks

Z p

9 0

0.0039

9 0

0.0039

F3D xSPECT Bone Delta F3D xSPECT Bone Delta

N 9 9 0 9 9 0

Median 3.2 1.9 1.3 2.5 1.6 0.9

lowest 2 1.5 2 1.3

highest 3.8 2.5 3.1 2.3

95% CI Median min 2.90 1.70 2.30 1.40

95% CI Median max 3.66 2.27 2.90 2.24
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Figure 23: Bland-Altman analysis 

showing an overall preference  

of the average reader for the  

IQ questions.

Figure 24: Bland-Altman analysis 

showing an overall preference  

of the average reader for all  

questions.
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Figure 23: Bland-Altman analysis showing an overall preference of the average reader for the IQ questions. 
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Figure 24: Bland-Altman analysis showing an overall preference of the average reader for all questions. 
 
In the next section we analyze the responses pair wise and by individual readers and 
questions. 

In the next section we analyze the responses pair wise and 
by individual readers and questions.
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Wilcox on signed ranks test for 2 dependent samples (ZS, JHU) Intra Class Concordance (PH, JHU)

Q#
Quantify differences in  
image quality of F3D and 
xSPECT Bone (xB)

Nega-
tive 

ranks

Positive 
ranks

Rank 
ratio Z p

Epected p 
(Bonferroni 
corrected)

Interpre
tation ICC Flash3 D p- value ICC  

xSPECT p- value

1 Please rate your general  
impression of the noise: 47 65 0.723 -2.25 2.48E-02 3.85E-03 NS 0.1381 0.195 0.6712 0

2
Please rate your general  
impression of the diagnostic 
importance of the noise

49 54 0.907 -0.88 3.77E-01 3.85E-03 NS 0.2634 0.083 0.5805 0

3
Please rate your general  
impression of the image  
resolution?

165 1 165 -11.3 1.94E-29 3.85E-03 xB is  
better 0.5446 0.0004 0.2974 0.0823

4

Please rate your general  
impression of the diagnostic 
importance of the image  
resolution

94 19 4.947 -6.39 1.67E-10 3.85E-03 xB is  
better -0.2621 0.9463 0.2459 0.0889

5 How many distinct artifact 
classes do you see? 13 57 0.228 -4.65 3.41E-06 3.85E-03 F3D is 

better -0.0491 0.5522 0.2387 0.0544

6

Please rate your general  
impression of the diagnostic 
importance of these artifact 
classes:

29 46 0.630 -2.08 3.78E-02 3.85E-03 NS -0.0213 0.5143 0.1739 0.0788

7
How many artifact classes do 
you see that are diagnostically 
disturbing or causing concern?

15 29 0.517 -1.48 1.38E-01 3.85E-03 NS -0.0205 0.5052 -0.0803 0.6019

8

In your estimate, please rate 
your impression of increase 
in lesion detection specificity 
compared to Planar/Whole-
body:

107 23 4.652 -6.66 2.76E-11 3.85E-03 xB is  
better 0.6417 0 0.1273 0.2413

9

In your estimate, please rate 
your impression of increase 
in lesion detection sensitivity 
compared to Planar/Whole-
body:

90 30 3.000 -5.5 3.80E-08 3.85E-03 xB is  
better 0.6742 0 0.5275 0.0006

10

In your estimate, please rate 
your impression of increase  
in lesion conspicuity compared 
to Planar/Wholebody:

102 20 5.100 -7.04 1.88E-12 3.85E-03 xB is  
better 0.6274 0 0.5383 0.0004

11

In your estimate, please rate 
your impression of increase 
in your diagnostic confidence 
compared to Planar/Whole-
body:

109 23 4.739 -7.47 7.97E-14 3.85E-03 xB is  
better 0.4072 0.0216 0.0858 0.3038

12

Please rate your impression of 
diagnostic utility of the image 
as presented & compared to 
your clinical practice:

117 15 7.800 -8.79 1.51E-18 3.85E-03 xB is  
better 0.5102 0 0.1545 0.0962

13

SPECT images only: Overall, 
do you accept the image and 
would you use it in your  
clinical practice?

111 27 4.111 -7.05 1.82E-12 3.85E-03 xB is  
better 0.4668 0.0048 0.3487 0.0012

 (smaller score is better)      * ICC negative = inconclusive

Figure 25: Score rating from pilot evaluation of 10 readers. Rating score: 1 to 5. Smaller score is better. Questions 8-12 allowed for 6 levels, with a score 

of 6 denoting a decrease. The color code indicates the interpretation of the statistical results. Orange indicates a statistical non-significant difference 

(“NS”) as the p values is larger than the expected Bonferroni corrected p value. Green indicates that xSPECT Bone (“xB”) is favored while blue indicates  

that Flash3D (“F3D”) is favored. The ICC is in red if it is significant.
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Clinical example

Figure 26 shows comparison images of xSPECT Bone and Flash3D 
reconstruction of  99mTc MDP bone SPECT of the pelvis and lumbar 
vertebrae in a 66-year-old female  patient with a history of adeno-
carcinoma of the lung. xSPECT images shows higher uptake in the 
metastatic lesion in the sacroiliac joint with sharp lesion margins, 
as well  as improved visualization of pelvic bones, sacral body, 
ala of sacrum and spinal canal. Focal hypermetabolic metastatic 
lesions in L1 and L4 vertebrae are well delineated on SPECT, with 
higher lesion intensity in xSPECT Bone reconstruction. Small focal 
metastatic lesions in the acetabular margin and ischium are also 
better defined with higher lesion contrast with xSPECT.

Study parameters:
20 mCi 99mTc MDP inj. SPECT: 64 frames 20 sec/frame; CT: 140 kV 
50 eff mAs. 3 mm slice thickness

Figure 25 shows the result of the analysis of both the chest 
and the pelvis evaluation by Dr. S. Zsolt (JHU) using a Wilcoxon 
signed rank test for two independent samples and the ICC values 
measuring concordance, analyzed by Dr. P. Huang (JHU). The 
results above were presented at the SNMMI 2013.37 Please note 
that questions 8 through 9 specifically ask for an impression of 
the increase in lesion detection specificity and sensitivity. This 
is not to be equated with showing a quantifiable increase in 
lesion detection specificity and sensitivity. A dedicated clinical 
evaluation for lesion detection specificity and sensitivity may be 
executed at a later point in time.

The results of Aims 1 and 3 are very encouraging, but are mostly 
helpful to design the full evaluation by testing the length of time 
needed to complete the workflow, precision of questions, etc. 
Furthermore, they allowed us to compute the needed sample 
size for the full evaluation, which is expected to be completed 
before the end of 2013.

	
  

Figure 26: Data courtesy of Johns Hopkins University, Baltimore, Maryland, USA. 
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Figure 27: Calibrated Sensitivity Source. The sphere contains the 57Co  

source, the remainder is for safe handling of the source. The source is  

designed to exhibit the same scattering signature as if the spherical  

source was without the support body.

The Second Application:  
xSPECT Quant

xSPECT’s quantitative foundation: NIST traceable 
calibration and rigorous data handling

In emission tomography, the data consist of photon detection 
events (“counts”). At the instant that an event is detected, its 
position on the detector, energy, and detection time are recorded. 
Context information from the system and patient, such as detector 
position, motion, and physiological trigger events are added, 
resulting in a list of events – listmode, or raw, data. For compu-
tational ease, the data is framed into projection views containing 
counts-per-pixel.

Physically, the injected activity becomes distributed throughout 
the patient prior to the imaging time and may be regarded as a 
functional activity density with the preferred SI units of Bq/ml 
(note: 1 kBq/ml = Bq/mm3). Correspondingly, the xSPECT Symbia 
Intevo measures the activity concentration in Bq/ml at a given 
reference time.

Quantitative assessment is already important in oncology for internal 
dosimetry,38,39 where it can be used for internal radiation treatment 
planning and monitoring. However, today only planar studies are 
routinely used in the clinic for this purpose, aided by a transmission 
and/or calibration source during acquisition. A summary of current 
techniques was published by Zaidi in reference 40.40 The desire for 
quantitative SPECT is high and extends to a plethora of isotopes. A 
summary of potential applications is provided in reference 41.41 For 
instance, an upcoming need is quantitation of 177Lu imaging.42 In 
the case cited here, quantitation is achieved using clinically available 
post-processing tools. However, existing procedures are site-specific 
and not standardized.

In general, research solutions for quantitative SPECT are possible 
using clinically available tools. However, such options tend to be 
both laborious to use as well as unique to each particular system 
and site.43 Typically, they consist of some conversion of the 
reconstructed image from counts-per-voxel to Bq/ml. The process 
starts with outlining a volume-of-interest (VOI) and applying a 
conversion factor to the mean count within the VOI. The user must 
then compute and/or select a conversion factor from a list, with 
this selection based on the context (such as location, number of 
iterations, dwell time, etc.) of the VOI. This is time-consuming 
and potentially error prone. We seek a solution that is reliable and 
generalizable across systems, sites, and time, and therefore more 
easily integrated into the clinical routine.

Any quantitative SPECT methodology has to address many 
problems related to accurate modeling of the imaging physics, 
choice of algorithm, and computer power (see, e.g., references 
44-46). Additionally, other aspects must be addressed if it is to 
be deployed in a clinical environment, such as system stability, 
calibration and clinical usability, to only name a few. The xSPECT 
solution addresses many of these issues comprehensively, with 
the  goal being to adapt to the tracer and selected application, 
and to deliver an, as accurate as possible, estimate of the 3D 
activity concentration in-situ. However, in its first release version, 
only 99mTc imaging using the LEHR collimator is provided. Clearly, 
this is just the beginning, and we decided to start with the 99mTc-
LEHR pair, and to first prepare infrastructure and system for future 
isotope-collimator pairs. A fundamental change is the adherence 
to the data-is-sacred principle and to apply corrections in image 
space during the reconstruction. This principle has significant 
ripple effects inside the system architecture and will be even more 
evident as we move on to other isotopes.

For xSPECT Quant we employ a NIST traceable calibration using a 
57Co source (Calibrated Sensitivity Source (CSS), Figure 27). Each 
CSS contains an activity accurate to within a  3% (99% CL or 2.56σ ) 
traceable uncertainty of the known manufactured strength,  which 
itself resides within a 15% acceptance range of the nominal 111 
MBq. Following proper calibration, where the CSS is attached 
to the integrated source holder and extended into the FOV at 
a precise location (Figure 28), the xSPECT system is designed  
to estimate the activity concentration as an integral part of the 
reconstruction process. We also have an alternate method using 
a 99mTc protocol that doesn’t offer the advantage of standardiza-
tion, but can be used as fall back in case the CSS is not available. 
The result is an image in units of Bq/ml. No further conversion is 
needed. It is important to reiterate that all corrections occur in 
image space, allowing the data to remain unadulterated Poisson 
variables throughout the reconstruction process.
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Clinical evaluations of xSPECT Quant
 
With regards to activity quantitation, preliminary results with a 
prototype xSPECT Bone show that the average activity concentra-
tion (AC) for Flash3D was 51.87 ± 17.38 kBq/ml (95% confidence 
interval (CI) 44.00–59.74 kBq/ml) corresponding to an average 
SUV of 6.41 ± 1.71 (95% CI 5.63–7.18 SUV). xSPECT Bone results 
showed an average activity of 56.70 ± 17.21 kBq/ml (95% CI 
48.87–64.53 kBq/ml) and an average SUV of 7.02 ± 1.67 (95% CI 
6.26–7.78 SUV). For both reconstructions, SUV correlated signifi-
cantly with HU (Flash3D: r=0.536, p<0.05; xSPECT Bone: r=0.643, 
p<0.005). Both Flash3D and xSPECT Bone activity concentration 
values correlated significantly (r=0.967, p<0.0001).48

The results of this study show a high correlation between Flash3D 
and xSPECT Bone with regard to the measurement of regional 
activity concentration. Tracer uptake correlated with bone density 
which reinforces the physiological significance of this variable.

The CSS can also be placed in a dose calibrator with a jig that 
specifies the geometry and allows for cross check between the 
system, the dose calibrator and the gold standard. Details about 
the calibration method can be found in a white paper by Bhat-
tacharya et al, 2013.47 The goal of the CSS calibration is to stan-
dardize the system sensitivity, which is essential for a quantitative 
results that can be compared across systems, and time.

The choice of the CG update method, as well as the improved 
image formation model in conjunction with the more accurate 
alignment of data, has advantages for quantitative accuracy and 
reproducibility. Furthermore, a corresponding improvement in 
image quality may be fostered, as these aspects complement 
each other.

Currently, quantitative imaging is only supported for the LEHR 
collimator and the 99mTc isotope.

	
   Figure 28: CSS is inserted into the Symbia Intevo and  

supported by the integrated source holder (not shown).  

The dashed lines depict the FOV.
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Clinical example
 
Figure 29 shows a possible work up of the quantitative image. 
The SUV method for the Bone application is not defined, and we 

Summary

Siemens introduces Symbia Intevo, the world’s first xSPECT 
system, which represents a further integration between SPECT 
and CT by shifting the imaging viewpoint away from the SPECT 
Frame-of-Reference and into the CT Frame-of-Reference. The 
reconstruction engine was changed significantly from previous 
MLEM methods and is now based on the minimization of the 
Mighell 
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To guard against image noise resulting from this fundamental pitfall and achieve 
interpretable images, we terminate the reconstruction early and apply post smoothing. 
Yet we accept that with this procedure we have resolution and noise characteristics that 
vary across the image due to the finite number of updates. Nevertheless, despite this 
drawback, this strategy is in clinical use because it produces visually pleasing results and 
allows for efficient compensation for the physics of the image formation process via 
procedures such as attenuation and scatter correction.   
 
 The ML-EM update mechanism is derived by maximizing the Poisson likelihood, yet the 
update formula itself is insensitive to the data statistics. For instance, simply scaling data 
by a constant factor has little effect on the ML-EM reconstruction, yet clearly the data is 
no longer Poisson. This insensitivity, even to a blatantly incorrect data alteration must 
come for a price.  
 
A typical ML-EM implementation uses a multiplicative update mechanism, where the 
update factor is positive, semidefinite, and essentially a ratio comparing the data and 
data model, which appears in the denominator.  In Flash3D, we limit the denominator to 
a minimum threshold, avoiding the division by zero or very small numbers and thus not 
allowing the ratio to become too large. The choice of this minimum threshold, in 
conjunction with the multiplicative update method, gives rise to an “evaporation” effect, 
wherein counts in regions of low activity gravitate towards regions of high activity. 
Lowering this threshold value will yield noisier images, and increasing the threshold will 
increase the evaporation effect. In practice, this compromise limits the low count 
application of Flash3D. 
 
We discuss this topic in the context of characterization of the xSPECT reconstruction in 
more detail, and demonstrate for instance the effect of count reduction on patient and 
phantom data in [16].   
 

The fundamentals of the xSPECT reconstruction platform 
 

Each iterative reconstruction algorithm consists of an optimization method and an 
objective function upon which this optimizer operates. For xSPECT, we chose the 2χ  as a 
merit function, which for Gaussian noise is quadratic in the data model and therefore 
has a linear gradient.  The problem with the traditional 2χ , however, is that the variance 
of Poisson counts is equal to its expectation value, rendering it again nonlinear and ill-
behaved in the low count regime.  Modified versions of the 2χ  have therefore been 

proposed by Mighell [17].  We use Mighell’s 2
γχ  merit function 

 ( ) ( )22 Min ,1 1i i i i
i

d d m dγχ = + − +  ∑ , (1) 

 

 merit function via an additive, Conjugate Gradient 
update mechanism.
 
Furthermore, xSPECT employs an improved model of imaging 
physics and conducts all corrections in image space, allowing 
the data to maintain their original Poisson characteristics. To 
more fully utilize the CT advantages, we reconstruct projections 
having a matrix size of 256x256, allowing for a finer spatial 
sampling. Despite the corresponding lower count density, this is 
accomplished with little noise penalty compared to the currently 
standard 128x128 data.

At the heart of the image projection operator is the measured 
PSRF, which spans the entire FOV and range of imaging distances, 
as well as a more accurate characterization of the detector posi-
tion and improved detector performance.

Figure 29: xSPECT quantitative 

measurements in lumbar verte-

brae of a patient with normal 

tracer distribution in thoracic  

and lumbar vertebrae show  

tracer concentration of 69 kBq/ml 

and average SUV of 7.28 in the 

center of the T9 vertebral body. 

Comparison with normal range 

shows these values to fall around 

the upper end of the range for 

normal.48 Injected dose: 574 

MBq; patient weight: 141 lb;  

patient height: 5’8” (Bq/ml  

values obtained from display  

in research workstation; SUV  

obtained from syngo TrueD).

Data Courtesy of University of  

Erlangen, Erlangen, Germany

Another feature of the xSPECT Symbia Intevo is the incorporation 
of the first application context-specific reconstruction for bone 
applications: xSPECT Bone. This improves effective image quality 
for relevant studies.

Furthermore, all reconstructions are quantitative ab-initio, 
a feature which is enabled when the xSPECT Symbia Intevo is 
calibrated with a NIST traceable 57Co point source.  This ensures 
system accuracy and stability, allowing for quantitative SPECT 
imaging for the LEHR collimator and 99mTc isotope. As a first step, 
the technology currently has been applied to 99mTc. However, the 
key advancement is that an infrastructure has been developed 
that now allows us to move forward with quantitative SPECT of 
more complex isotopes.

Image quality improvements, as well as dedicated efficiency solu-
tions for cardiac and planar imaging, offer the ability to either 
lower dose or total acquisition time.

Productivity features, such as AutoQC, and ACC lower the opera-
tional burden in the clinical environment.

used a similar methodology as in PET, knowing that at this point 
it has no demonstrated diagnostic information.

SUVmax	 8.67
SUVavg	 7.28

69 kBq/ml
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Glossary

Attenuation Correction (AC): Correction for patient-specific 
attenuation. We derive the attenuation map from CT after a 
patented conversion process creating the attenuation map or 
“mu-map”, which is included in the model projection operator.

Extra Modal Information (EMI): Clinically driven information 
derived from a secondary modality and used in the reconstruction 
of the primary modality. Its primary function is to improve image 
quality, and assumes an accurate system model and compensation 
techniques that describe the image formation physics accurately.

Flash3D (“F3D”): Siemens’ implementation of OSEM with 3D 
(transverse and axial Point Spread Response Function - PSRF). 
The PSRF is modeled as a Gaussian. Its width, as measured in 
FWHM, is a function of the collimator acceptance angle (known 
for each collimator) as well as the distance between emission 
point and detection point on the detection plane. The system 
provides the Radius-of-Rotation for each angle, and the remaining 
components that make up the total emission-detection distance 
are essentially computed from the known system geometry. The 
projection operators and thus, Flash3D, include Attenuation 
Correction (AC) and Scatter Correction (SC). In this context, when 
we refer to a NM reconstruction method we always imply that it 
has been corrected for attenuation, scattering, and the distance 
dependent 3D resolution recovery for a given collimator, unless 
otherwise stated.

Scatter Correction: We use energy window-based scatter correc-
tion that includes either Dual or Triple energy windows for each 
primary window. Since there are no relevant emissions above  
140 keV for 99mTc, the isotope setting only contains a lower  
scatter window that is adjacent to and of the same width as the 
primary window.

Mu-map: The mu-map is the voxelized volume of the Linear 
Attenuation Coefficient (LAC) as defined in Stefan-Beer’s law 
and measured in 1/cm. The LAC is typically referenced as the 
narrow beam value, measured from experiments that include 
essentially no scattered photons. The reconstruction uses the 
narrow beam value if scatter correction is selected, which is the 
default. Otherwise, it uses a broad beam correction factor, which 
is dependent on the isotope, and selected energy window width 
of the photopeak window. This value is automatically computed. 
see Attenuation Correction.

Zone-map: Indexing of each voxel in a mu-map with its tissue 
type, followed by a smoothing method that continuously combines 
the discrete threshold values for the 5 different base classes: air, 
adipose tissue, soft tissue, spongy bone, cortical bone. This is 
a method to derive context-based information. In this case, we 
know that DiPhosonate is injected, which binds to bone and thus 
it makes sense to separate bone from non-bone tissue. Different 
zone maps can be derived for different purposes. For instance, 
for phantom studies the zone map extraction can be adjusted to 
separate water from plastic, or a certain contrast concentration. In 
other cases, a zone map can be computed from other anatomical 
modalities.

CGAS: Base algorithm used in AR, without the zone map. Unlike 
Flash3D, it is not based on ML-EM, but on a Conjugate Gradient 
Method, and uses a chi-squared merit function modified for 
Poisson statistics. It also includes a 3D PSRF, but is more accurately 
modeled compared to the simple 3D Gaussian of Flash3D. The “A” 
in CGAS refers to AC and the “S” to SC. The reconstruction method 
estimates activity concentration, and the output unit Bq/ml, and 
uses a class standard sensitivity value for a given collimator.

CGZAS: Reconstruction engine is based on CGAS, but also includes 
context-based information using a Zone-map for zonal projections 
to achieve the image quality improvement, thus the “Z” in “CGZAS”.
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