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In 2016, machine-learning pioneer Geoffrey Hinton  
suggested that “people should stop training radiologists 
now. It’s just completely obvious within five years deep 
learning is going to do better than radiologists.” Even 
though this has not happened so far and is unlikely to  
happen in the foreseeable future, the impact of deep learn-
ing on radiology and the way imaging is performed and  
interpreted is undeniable. For MR imaging (MRI), it has 
turned out that image reconstruction can benefit hugely 
from the inclusion of trained components and can gener-
ate better images from fewer data. Initial works on deep 
learning-based image reconstruction started around the 
time of Hinton’s comment [1, 2]. With its capability to  
push MRI toward higher resolution, higher signal-to-noise, 
and/or shorter acquisition time, it only took a few years  
for the technique to transition from technical research into 
commercially available products that are widely used in 
clinical routine.

The fast clinical transition combined with the repu-
tation of neural networks for being black boxes under-
standably raises questions and concerns about the loss  

or masking of relevant information and the hallucination  
of “beautiful” but false images. Users would like to have  
a better understanding of how the technique works, why  
it enables a significant performance improvement regard-
ing image quality, and where its limitations are. Even 
though answering these questions about deep learning  
applications is generally difficult, it is important to be  
more explicit about the specific type of architecture being 
referred to. After various approaches were explored, the 
“physics- based” or “physics- informed” reconstructions  
have prevailed for generating an image from raw k-space 
data. This class of reconstructions is characterized by the 
fact that a conventional parallel imaging model is com-
bined with trainable components that take care of image 
enhancement.

Physics-informed reconstructions
The idea of combining parallel imaging and image  
enhancement is not new. It is also a central aspect of  
Compressed Sensing (CS) as used in MRI. For Compressed 

1   Illustration of regularized SENSE as a quadratic 
optimization problem, involving a data consisten-
cy term that relates the image x to k-space data y 
using an encoding matrix E involving sampling 
mask, Fourier transformation, and coil sensitivity 
maps. The data consistency term is balanced  
by a quadratic regularization involving a prior 
image z that is assumed to be zero. The definition 
of the regularization strength λ is such that the 
reconstruction provides images close to the prior 
for small values and close to the unregularized 
SENSE reconstruction for high values of λ. 
Therefore, the trajectory of solutions for varying 
regularization strength λ starts from the prior 
image and steps toward the minimum of the  
data consistency term.
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Sensing, the reconstructed image is obtained by iteratively 
solving an optimization problem which includes a data 
consistency term based on a parallel imaging model and 
image regularization terms. Deep learning-based recon-
structions (DLR) are often inspired by an explicit, iterative 
algorithm that is used for this kind of optimization. How-
ever, the connection to an optimization problem is re-
moved in DLR, and some processing steps are replaced  
by trainable components. This is referred to as an unrolled 
architecture. Most notably, image regularizations are typi-
cally replaced by neural networks. As such, Compressed 
Sensing reconstructions may be considered a special case 
of a physics-informed deep learning reconstruction as  
they are in the space of allowed configurations that can  
be obtained through training. But there is a large space  
of possible configurations, such that the heuristically  
designed versions employed in Compressed Sensing are 
unlikely to be picked. 

Once an architecture is specified, the optimal parame-
ters need to be determined. This is where the data-driven 
aspect of deep learning comes in. The most established  
approach is supervised training based on fully sampled ac-
quisitions serving as ground truth. For typically thousands 
of such datasets, a desired target image is generated.  
Furthermore, inputs that mimic an accelerated acquisition 
are synthesized. Additional inputs such as coil sensitivity 
maps needed for the parallel imaging component may be 
provided. The network parameters are then obtained by 
established training methods that stochastically optimize 
the model parameters by comparing the network output to 
the desired target using a similarity metric or loss function. 
Training typically lasts multiple days on dedicated GPU 
servers. Once finished, the obtained configuration or  
model parameters can be exported for prospective use on  
a scanner. Prospective execution has a numerical demand 
similar to an iterative reconstruction and is usually done  
on integrated GPUs.

A conceptionally intuitive network 
architecture
To gain insight into the performance of deep learning- 
based image reconstruction, an architecture that allows  
direct connection to parallel imaging and image-based  
denoising is presented in the following. 

Starting off with conventional parallel imaging, a regu-
larized SENSE [3] reconstruction is illustrated in Figure 1. 
Already in this reconstruction, an additional regularization 
term is introduced that allows to condition the inversion of 
the linear problem when the parallel imaging acceleration 
becomes too large for the available coil configuration.

At this point, it is worth mentioning the g-factor, 
which is often used to describe the additional local noise 
amplification in parallel imaging. It is sometimes suggested 
that the g-factor is purely determined by the acquisition 
and its acceleration. This is not correct because, for in-
stance, a zero-padded Fourier transformation corresponds 
to ideal noise propagation and a g-factor of ‘1’. Of course, 
this is with unacceptable aliasing, but artifacts are not  
reflected in the g-factor. Any practical parallel imaging  
reconstruction therefore includes a regularization that 
helps to limit the noise amplification. The definition of the 
regularization strength λ in Figure 1 is such that it is also  
an upper bound on the noise amplification or g-factor.  
In that sense, it is interpretable, which will become rele-
vant below. At the same time, λ is the step size on the  
trajectory from the prior image toward the unregularized 
SENSE reconstruction. Figure 2 shows a comparison of  
two reconstructions with and without regularization using 
aggressive retrospective acceleration. It is apparent that  
a regularization is required to reduce noise amplification, 
i.e., to restrict the g-factor.

Given a test dataset that is later also used for more in-
volved networks, a first experiment is to evaluate metrics 
between regularized SENSE reconstructions and expected 
targets from the fully sampled acquisition as a function of 

2   Unregularized SENSE reconstruction (2A) and regularized SENSE reconstruction with λ = 4 (2B) from retrospectively subsampling a fully 
sampled acquisition (2C). The retrospective acceleration factor is 2 × 2 in AP and HF direction, deliberately chosen to be too aggressive for  
the given coil setup.

2A 2B 2C
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the regularization strength. This is presented in Figure 3. 
Interestingly, the best results are not achieved for the  
unregularized SENSE, but depending on acceleration and 
chosen metric for regularization strengths on the order  
of 5. Determining the optimal regularization this way  
may already be considered a machine learning recon-
struction – possibly the simplest conceivable one, and  
with unimpressive performance.

For deep learning-based reconstruction, image-to- 
image networks are typically included for the enhance-
ment of intermediate images. In the simplest case, this 
may be a denoising network after a parallel imaging  
reconstruction. A more general approach that alternates 
between parallel imaging reconstruction and deep 
learning- based enhancement is depicted in Figure 4.

The basic idea is to have regularized SENSE recon-
structions where the regularization strength steps from  
a current prior image toward the unregularized SENSE  
reconstruction. The step sizes are then determined through 
training, and the network estimates the next prior image 
from the result of the previous SENSE reconstruction.  
So the task of the network appears constrained and the 
conventional parallel imaging reconstruction is a subset of 
the training architecture. Another advantage is that there  

is no requirement to have a larger number of iterations to 
ensure convergence. This is ensured by using the regular-
ized SENSE reconstruction as an update mechanism.

To evaluate the potential of such an architecture, an 
unrolled network with 6 iterations and conventional U-nets 
[4] was set up and trained using about 5,000 training  
pairs from about 500 acquisitions. On the same test data-
sets used in Figure 3, the finally obtained reconstruction 
achieved PSNR values of 37.7 dB and 36.5 dB, as well  
as SSIM values of 0.93 and 0.92 for a retrospective accel-
eration of 4 and 6, respectively. This outperforms the  
conventional reconstruction drastically. In Figure 5, an  
example image is shown on the left, which visually comes 
close to the ground truth.

Most notably, the noise amplification in the center of 
the image and associated with an increased g-factor seems 
to be absent. This is a rather general behavior observed  
for unrolled, deep learning-based reconstructions. Some 
insight can be obtained when looking at the regularization 
strengths at each iteration. These are stated in Table 1.

It is apparent that the training leads to a parameteriza-
tion where the first iterations perform a weakly regularized 
parallel imaging reconstruction whose output is taken  
to estimate the following prior using a neural network. 

3   Average peak signal-to-
noise ratio (3A, PSNR) 
and structural similarity 
index measure (3B, 
SSIM) of test datasets 
with retrospective 
subsampling with 
acceleration 4 (petrol) 
and 6 (orange) as  
a function of the 
regularization strength.
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4   Illustration of an unrolled deep learning-based 
reconstruction that starts from a vanishing prior 
imaging (z0 = 0) and then performs iterations 
comprising a regularized SENSE reconstruction 
followed by the estimation of a new image  
prior using a neural network Un. The number of 
iterations is fixed. The regularization strengths for 
each iteration and the model parameters of the 
neural networks form the trainable parameters. 
The output of the final network is taken as the 
reconstructed image. The diagram on the right 
sketches a trajectory of the iterations through the 
image domain with indicated ellipsoidal hyper - 
surfaces of the data consistency term.

zn+1 = Un+1(xn+1)

xn+1 = argminx( ‖ Ex – y ‖2 +     ‖ x – zn ‖2)1
λn

2

x1

z0 = 0

z1

λ0

λ1

U1

4 magnetomworld.siemens-healthineers.com

Spotlight MAGNETOM Flash (87) 2/2024



λ1 λ2 λ3 λ4 λ5 λ6

7.05 7.05 3.91 1.85 1.11 0.91

Table 1:  Regularization strengths for each iteration of a trained 
network with 6 iterations.

Therefore, the reconstruction quickly comes close to  
solutions with acceptable data consistency. In the latter  
iterations, the steps toward the unregularized SENSE solu-
tion become smaller. Here, the conditioning of the data 
consistency starts to become more relevant. Areas with 
small noise propagation are also better conditioned, such 
that the step sizes affect the image more and make sure 
that the image is consistent with the data consistency.  
At the same time, this also restricts the solution in regimes 
with worse conditioning, and the image regularization  
has more influence there. Therefore, the last iterations 
mostly help to improve the image quality in the less well- 
conditioned regions, and the noise appearance in the final 
reconstruction is much more homogenous.

The presented behavior therefore gives a reasonable 
explanation for the significantly improved performance  
of unrolled deep learning-based reconstructions compared 
to pure post-processing approaches. Alternating between 
data consistency based on a parallel imaging model and 
deep learning-based image enhancement allows to itera-
tively optimize the output of the reconstruction. This is also 
a reasonable explanation for why the approach generalizes 
surprisingly well, or rather why it is less dependent on the 
image content seen during training, as the architecture is 
highly incentivized to be consistent with a physical model 
with freedom mostly for the ill-conditioned domains. This 
freedom seems to be in local image enhancement such as 
denoising and edge preservation, meaning that topics like 
hallucination have so far not surfaced for physics-informed 
deep learning-based image reconstructions. The magical 
aspect that remains unexplained is the performance of the 
individual neural networks for image enhancement. This is 
a general aspect of deep learning and is outside of the 
scope of this paper.

Validation of deep learning-based image 
reconstruction
Even though the performance of deep learning-based  
image reconstruction can be explained to some extent,  
it needs to be validated with care. Currently, the transition 
into clinical routine is focused on improving established  
sequence types and contrasts. Therefore, clinical evalua-
tions that use qualitative and quantitative metrics for  
comparison to the established clinical sequences are  
typically used to establish evidence [5].
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