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Prepare your patients mentally  
for their MRI exam

Most patients who undergo an MRI exam, experience some level of anxiety. As a result, 
some move so much that they cause motion artifacts, cannot complete the scan, or do  
not even show up for the exam. Up to 75%1 of all unsatisfactory scan outcomes can be 
eliminated by educating patients on the MRI exam.

Tap the full potential of your facility by preparing your patients for the scan with our  
patient education toolkit. A video, poster, meditation, and a book for children explain 
the process of an MRI exam in simple words and answer common questions:

• What does an MRI exam entail?
• What is important when having an MRI exam?
• What does an MRI exam feel like?

1 Törnqvist, E., Månsson, A., Larsson, E.-M., & Hallström, I. (2006). Impact of extended written information on patient anxiety 
and image motion artifacts during magnetic resonance imaging. Acta Radiologica, 47(5), 474–480.  
https://doi.org/10.1080/02841850600690355.

Download the patient education toolkit in your preferred language here: 
siemens-healthineers.com/mri-patient-education 

Your MRI examination 
explained simply

Magnetic Resonance Imaging (MRI) is an imaging technique used in 
radiology for examining internal organs. Unlike other imaging methods 
that use radiation such as CT, MRI uses a magnetic field and radio waves 
to generate precise images. 

Since an MRI does not expose a patient to radiation, the exam is a very 
safe diagnostic procedure. Nevertheless, do inform the staff if you are  
pregnant or allergic to any medicines.

If you have any further questions, please do not hesitate to talk to the medical staff.  
You can also watch this video for more in-depth information on how to prepare for your MRI exam:

siemens-healthineers.com/mri-patient-education

What does an MRI exam entail?

What is important when having  
an MRI exam?

Metal objects are not allowed inside the MRI 
suite due to an MRI’s strong magnetic field. 
Please inform staff if you have any metal 
objects inside of your body that cannot be 
removed such as implants, a pacemaker,  
and stents. 

You won’t feel anything during the exam.  
You will receive earplugs to protect your ears 
from the loud thumping noises of the MRI 
scanner. Lying inside a narrow tunnel can  
be an unusual experience, which is why we 
recommend closing your eyes. However,  
if a contrast agent is used, the area where  
it enters your body may feel warm or cold. 
Large or colored tattoos may also feel warm 
during the exam. 

In the patient questionnaire, you enter  
information that is important for your  
examination. If contrast agent is required  
to detect certain structures in your body 
more clearly, you will be fitted with a port.

An MRI exam lasts approximately 20 to  
60 minutes. During your exam, try to remain 
as still as possible. Movements can adversely 
affect the quality of the images and result  
in delays or rescans.

To achieve best image quality, a receiver  
coil will be placed on the region of your body 
to be examined. Once ready for the exam, 
you will be moved slowly into the MRI tunnel 
and the scan will begin.

You must remove any metal objects on  
your body before the start of the exam 
including piercings, jewelry, eyeglasses, 
hearing aids, phones, or underwire bras. 

What does an MRI exam 
feel like?
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Trigger Delay, to achieve motion artifact free images 
in the heart region
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Clinical Impact of Combining Novel  
Non-Contrast-Enhanced MR Angiography  
with Multivenc 4D Flow MRI for  
Cardiovascular Diseases
Satoshi Higuchi1, Yoshiaki Komori2, Michaela Schmidt3, Daniel Giese3, Hideki Ota1

1Department of Diagnostic Radiology, Tohoku University Hospital, Miyagi, Japan
2Siemens Healthcare K.K., Tokyo, Japan
3Siemens Healthcare GmbH, Erlangen, Germany

Introduction
Non-contrast-enhanced magnetic resonance angiography 
(non-CE MRA) is a non-invasive examination which allows 
to visualize the vascular morphology and its vascularity 
without the ionizing radiation or administration of contrast 
agents required in CT angiography. Four-dimensional flow 
MRI (4D Flow MRI), which allows hemodynamic assess-
ment in blood vessels, provides additional information for 
predicting cardiovascular events and understanding their 
pathology in patients with cardiovascular diseases.

However, these imaging techniques have the drawback of 
long scan times, due to the need for an electrocardiogram 
(ECG) and respiratory gating. Therefore, novel Compressed 
Sensing (CS) techniques and their application to non-CE 
MRA and 4D Flow MRI are emerging [1]. This paper reviews 
the clinical usefulness of highly accelerated non-CE MRA 
and highly accelerated 4D Flow MRI acquisition with  
multivenc (MV). These techniques will be termed  
Advanced MRA and MV CS 4D Flow in the following.

1   Comparison between conventional non-contrast MR angiography (MRA) and non-contrast Advanced MRA in a healthy volunteer.

Non-contrast conventional MRA Non-contrast Advanced MRA
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Advanced MRA
Non-contrast MRA can be applicable to many patients with 
cardiovascular disease, but it is especially useful for imag-
ing patients with congenital heart disease, patients with 
contraindications for contrast agent injection, and patients 
who need repeated follow-up imaging. However, the  
clinical use of free-breathing and ECG-gated native MRA 
acquisitions is often hampered by the long scan times 
needed to achieve high-resolution image quality. Siemens 
Healthineers recently introduced a novel non-CE MRA  
research sequence that uses Compressed Sensing (CS) and 
accurately reconstructs high-quality images from sparsely 
sampled k-space data with a significant reduction in scan 
time. The shorter scan time is expected to reduce motion 
artifacts, resulting in better image quality. 

Furthermore, conventional MRA methods often use  
a spectral adiabatic inversion recovery (SPAIR) technique 
for fat suppression. This can cause non-uniform signal  
reduction in blood vessels due to the sensitivity to main 
magnetic field (B0) inhomogeneities, especially at the 
boundaries of the lung and at locations with complex body 
morphology, such as the shoulders and neck [2]. Advanced 
MRA therefore uses a 2-point Dixon technique, which  
offers a robust fat-water separation technique that is less 
sensitive to B0 inhomogeneity and therefore results in less 
signal inhomogeneity in the blood vessels and potentially 
improved diagnostic performance. Results from a volunteer 
show that the heterogeneous signal distribution in the 
right subclavian artery, superior vena cava, and ascending 
aorta in conventional MRA is improved using Advanced 
MRA (Fig. 1). Figure 2 shows the MRA results from a  
patient with partial anomalous pulmonary venous return 
(PAPVR) of the left upper pulmonary vein. The scan time 

for Advanced MRA was reduced to 7 minutes, compared  
to 26 minutes for conventional MRA. In Advanced MRA,  
the PAPVR is clearly visualized without the signal inhomo-
geneities seen around the apex of the left lung in the  
conventional MRA image. Thus, Advanced MRA is a promis-
ing and emerging imaging technique that is expected to  
be clinically useful for patients with cardiovascular disease. 
It clearly depicts vascular morphological and vascular 
course abnormalities in arteries and veins while reducing 
both scan time and any artifacts caused by motion and  
B0 inhomogeneities. 

MV CS 4D Flow
4D Flow MRI is an imaging technique that enables the  
visualization and quantification of physiological hemo-
dynamics within the vasculature. While the assessment  
of vascular morphology using CTA has traditionally played 
a central role in diagnosis and treatment planning for  
vascular diseases, recent research efforts have focused  
on studying hemodynamics for further risk stratification 
and optimizing treatment strategies. Stanford type B aortic 
dissection is one of the diseases for which there is growing 
interest in developing hemodynamic biomarkers to predict 
prognosis. This is because evidence increasingly suggests 
that conservative management results in a favorable  
outcome in the acute phase, but a poor prognosis in the 
chronic phase [3–6]. We also retrospectively analyzed  
conventional 4D Flow MRI in patients with chronic Stanford 
type B aortic dissection and investigated the relationship 
between hemodynamic parameters at entry, true lumen, 
and false lumen and aortic growth rate derived from a  
CTA series (Fig. 3). This study revealed that patients with a 

2   Partial anomalous pulmonary venous return (PAPVR), in which the left upper pulmonary vein drains into the left innominate vein.

A patient (34-yo) following surgical repair for total anomalous pulmonary 
venous return underwent CMR due to residual right heart failure.

The advanced MRA improve the visualization of the margin of innominate vein.

The advanced MRA clearly revealed the left superior 
pulmonary vein merged into the innominate vein 
which is a cause of pulmonary high flow.

Conventional MRA (25 min 17 sec) Advanced MRA (6 min 50 sec)

Left internal  
jugular vein 

Left upper  
pulmonary vein
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higher rate of flow velocity or volume in the entry and 
false lumen compared to the true lumen were associated 
with fast aortic growth rate (Fig. 4) [7]. These hemody-
namic parameters could be a new predictor of cardiovascu-
lar diseases. How ever, widespread clinical implementation 
of 4D Flow MRI is hindered by the long acquisition time 
and limited sensitivity to a large spectrum of velocities. 
These shortcomings can be addressed by applying CS in 
combination with a multivenc acquisition, which was  
recently included in the MV CS 4D Flow research sequence 
developed by Siemens Healthineers. Regularization is  
performed both in space and time. The shorter acquisition 
time makes it possible to perform the previously challeng-
ing multivenc scans, which acquire phase-contrast datasets 
with different velocity encoding (VENC) values within  
a single acquisition [8]. Figure 5 shows phase-contrast  
images for three different VENC values. Fast flow in the 
true lumen and entry, which cannot be depicted by the 
lower VENC due to aliasing, is clearly depicted by the  

higher VENC. Meanwhile, slow flow in the false lumen, 
which is not well depicted by the higher VENC due to a  
limited velocity- to-noise ratio (VNR), is clearly depicted by 
the lower VENC. The merged images are calculated using  
a Bayesian unfolding approach utilizing all phase-contrast 
images as well as their corresponding magnitude images 
to extract an optimal phase-contrast image. This image 
corresponds to the VNR-optimal combination of all single- 
VENC acquisitions and thereby accurately depicts a wide 
range of blood-flow velocities in a single series of images, 
complementing the limitation of each VENC setting  
(Figs. 6, 7). 

Besides the long acquisition time, another reason  
for the limited clinical use of 4D Flow MRI is the post-
processing with vessel segmentation. In conventional  
4D Flow MRI, areas of slow blood flow are not recognized 
as intravascular regions, making it difficult to obtain  
accurate vessel segmentation easily (Fig. 8). By using the 
flow-independent vessel contrast of Advanced MRA and  

Acquired parameters
• average flow velocity (ml/s)
• peak flow velocity (ml/s)
• forward flow volume (ml)
• reverse flow volume (ml)
• net flow volume (ml)
• regurgitation fraction (%)

3   Evaluation of 
flow parameters 
in 4D Flow MRI 
in our study of 
patients with 
uncomplicated 
Stanford type B 
aortic dissection. 
TL: True lumen  
FL: False lumen

Entry flow
FL flow

TL flow
FL

TLaAo

Entry flow
FL flow

TL flow

4   Patient with a low aortic growth rate 
demonstrates higher flow velocity 
and volume in true lumen (TL) than 
that in entry and false lumen (FL) 
(peak flow = 111, 23, and 83 mL/sec 
and net forward volume = 32, 5, and 
16 mL in TL, entry, and FL, respec-
tively). A patient with higher aortic 
growth rate shows lower flow in TL 
(peak flow = 45, 168, and 219 mL/
sec and net forward volume = 16, 34, 
and 59 mL in TL, entry, and FL, 
respectively).

Patient with an aortic  
growth rate of 0.95 mm/year

Aortic diameters: 51.2 mm

Patient with an aortic  
growth rate of 2.91 mm/year

Aortic diameters: 54.6 mm

Entry flow
Entry flow

TL flow

FL flow

FL flow
TL flow
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its higher resolution for segmentation, the 4D Flow  
analysis time can be reduced and vessels with low flow are  
optimally included in the segmentation for particle tracing. 

Conclusion
The introduction of Advanced MRA and MV CS 4D Flow  
MRI is a groundbreaking advancement in cardiovascular 

imaging. In addition, as 4D Flow MRI becomes more widely 
available, more facilities will be able to perform it in clinical 
practice, and the accumulation of data from multiple  
facilities will accelerate the development of hemodynamic 
assessment methods. These non-invasive imaging tech-
niques provide accurate diagnoses and hemodynamic  
information in vascular diseases in a shorter time and  
thus have the potential to transform trends in clinical  

5   Differences in flow 
visualization in true 
lumen (fast flow) and 
false lumen (slow flow) 
due to differences in 
VENC settings.

Systolic
VENC 40

Systolic
VENC 100

Systolic
VENC 250

6   Merged VENC images are generated by synthesizing only the best signal from each dynamic range of the VENC images.

Systolic
VENC 50

Diastolic
VENC 50

DiastolicSystolic

Systolic
VENC 100

Merged VENC of  
VENC 50, 100 & 250

Diastolic
VENC 250

Slow flow is  
well visualized

Slow flow is  
well visualized

Noise in slow 
flow due to 
large VENC 
dynamic range

Not smooth  
due to  
aliasing
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Poor visualization  
due to aliasing

Seeding particles 
plain

Jet flow to false 
lumen and slow 
up-flow

Systolic SystolicDiastolic Diastolic Diastolic

VENC 190 Merged VENC of 
VENC 100 & 190

4D Flow analysis

Advanced MRA  
Non-CE MRA@3T 

Vessel anatomy data  
for volume rendering (VRT)

4D Flow analysis

VENC 100

7   A merged VENC image visualizes the complex flow in both the true and false lumens.

8   Improvement of 4D Flow postprocessing analysis using anatomical data with non-CE Advanced MRA.

• PC-MRA time mean 
velocity was used for 
VRT

• False lumen (very  
slow flow) is difficult 
to select

• Advanced Non-CE MRA 
was used for VRT

• False lumen (very  
slow flow) could be 
selected easily
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practice by helping alleviate the patient burden and en-
hance overall workflow efficiency. Thus, these technolo-
gies hold great promise for improving patient management 
and advancing the field of cardiovascular medicine.
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Advanced MRA CS 4D Flow

Sequence type T2-preped 3D FLASH 3D phase contrast cine

Acceleration technique CS CS

TE/TR (ms) TE1 1.34, TE2 2.87/7.8 3.42/57.5

FOV (mm) 450 × 450 400 × 320

Image matrix 192 × 125 160 × 128

Reconstructed spatial resolution (mm) 1.2 × 1.2 2.5 × 2.5

Slice thickness (mm) 1.2 2.5

Slices per Slab 128 35

Orientation Coronal Sagittal

Flip angle (degrees) 12 7

Bandwidth (Hz/pixel) 799 558

Segments 25 1

Fat sat. DIXON –

Respiratory Gating 1D PACE, ± 6.5 mm 1D PACE, ± 8 mm, ReCAR

Acceleration factor 11 7.7

Iterative reconstruction (n) 20 30

VENC – dual or triple

Table 1:  Imaging Parameters of Advanced MRA and CS 4D Flow  
CS: compressed sensing, TE: echo time, TR: repetition time, FOV: field of view, VENC: velocity encoding,  
ReCAR: Respiratory Controlled Adaptive k-space Reordering.
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My favorite feature …
… is the Trigger Delay parameter, to achieve  
motion artifact free images in the heart region. 
You can use it to optimize image quality in 
noncontrast- enhanced MR angiography when 
using a triggered 3D TrueFISP or FLASH se-
quence – to image the whole heart, coro naries, 
or the aorta.

The Trigger Delay should be set in such  
a way, that the region of interest is in a quiet 
phase, i.e., not much heart motion or flow  
happening during data acquisition. 

Expert Insights: Hidden Gems 
from Application Specialists at 
Siemens Healthineers
Khaled Khames on the Trigger Delay parameter

Khaled Khames
Khaled Khames is a physicist in Cairo, Egypt. He is passionate about training clinical staff on new MR 
technologies to help build MR expertise and practices that achieve the best outcomes for patients 
and optimal performance for healthcare providers.

Khaled enrolled in a Bachelor of Science in 2006, at the Department of Physics at Ain Shams 
University in Cairo. He went on to work as a physicist in a diagnostic nuclear medicine unit. When he 
discovered MRI, however, he was fascinated by the evolving technology and the challenges it solved, 
all of which inspired him to embark on a career in the MR field.

This path eventually led him to Siemens Healthineers, where he became Senior Application 
Specialist for Egypt, Sudan, Libya, Eritrea, and Djibouti in 2015. He is also an instructor at the 
Siemens Healthineers Academy in Egypt, where he teaches basic and advanced MR courses for 
physicians and technologists.

Khaled received the Learn Passionately Award 2023 at the Egypt Mid-Year townhall meeting.  
Outside of work, he loves spending time with his three daughters and going fishing.

Contact 
Khaled Khames 
Siemens Healthcare S.A.E.
SHS EMEA MESA EGY CS 1
Etisalat Club Rd
11435 al-Qahirah
Postbox 17631 Maadi
Cairo
Egypt
khaled.khames@siemens-healthineers.com

Cairo,  
Egypt
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1   Noncontrast triggered 3D TrueFISP 
(1A) Suboptimal Trigger Delay time, (1B) Appropriate Trigger Delay time,  
(1C) Suboptimal Trigger Delay time, (1D) Appropriate Trigger Delay time 

1A 1B

1C 1D

This quiet phase can be identified by a visual  
assessment of cine or flow images from the  
corresponding region. Scroll through the cine 
images and identify the quiet phase, ideally  
with starting and end point and the length in 
ms. The TT (Trigger Time) can be found in the 
image text on the left side.

With this knowledge you can now individ-
ually optimize the parametrization of the 3D  
sequence to the patients’ condition on the  
parameter card Physio/Signal.

Before you start editing, hover with the 
mouse cursor over the Trigger Delay parameter 
to visualize the information of the Data window 
start and the Data window duration. 

Adapting the Trigger Delay shifts your Data  
window start. (Cave: Additional Prep Pulses are 
added to the Trigger Delay for the Data window 
start point, such that the shown Trigger Delay  
in the user interface (UI) is not corresponding to 
the Data window start).

Adapting the number of segments modifies 
the Data window length. Modifying the number 
of segments has an impact on the Data window 
duration and the total acquisition time. 

Number of segments ↑ 
Data window duration↑ 
Total acquisition Time↓
 
Number of segments↓ 
Data window duration↓ 
Total acquisition Time↑

It is recommended to use a Data Window  
duration between 100 and 180 ms to keep  
motion and flow artifacts minimal.

Cave: Use a consistent trigger source. If you 
use e.g., Beat Sensor for cine imaging, make 
sure to use Beat Sensor for 3D imaging, too.

Acknowledgments
I would like to acknowledge the fruitful conver-
sations with Manuela Rick, Senior Applications 
Developer, Erlangen, Germany
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Ferumoxytol-Enhanced 4-Dimensional  
MR Imaging in Pediatric and Adult Congenital 
Heart Disease
J. Paul Finn, M.D.1,2; Takegawa Yoshida, M.D.1; Arash Bedayat, M.D.1; Ashley Prosper, M.D.1; Chang Gao1;  
Xiaodong Zhong, Ph.D.1; Ning Jin, Ph.D.3; Xiaoming Bi, Ph.D.4; Kim-Lien Nguyen, M.D.1,2,5

1 Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine  
at UCLA, Los Angeles, CA, USA

2Physics and Biology in Medicine Graduate Program, University of California, Los Angeles, CA, USA
3MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cleveland, OH, USA
4MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Los Angeles, CA, USA
5 Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System,  
Los Angeles, CA, USA

Introduction
MRI has unique strengths for cardiac imaging and is partic-
ularly useful in patients with congenital heart diseases. In 
recent years, multidimensional cardiac imaging has shown 
spectacular results by combining advanced techniques 
with ferumoxytol1 enhancement of the blood pool. In this 
short report, we will show how 4-dimensional imaging  
can be applied successfully to children2 and adults with 
congenital heart disease (CHD), with one illustrative  
example in each respective category. 

Children with congenital heart disease
In children, our goal is high-resolution, artifact-free images 
over the full cardiac cycle in patients who may weigh  
less than 2 kg, whose heart rate may exceed 180 beats  
per minute, who breathe up to 40 times per minute, and 
who may move spontaneously at any time. What could 
possibly go wrong!

The holy grail is to perform these studies without seda-
tion while the patient breathes spontaneously. Intensive 
research is underway in many laboratories (including our 
own) to make this a reality [1–7], but significant technical 
challenges remain. Meanwhile, with certain constraints, 

detailed and comprehensive 4-dimensional MR imaging  
of children with CHD is possible today, using a well- 
established methodology. The approach we have adopted 
is simple and consistent for all children who require  
sedation, independent of patient size, age, or disease  
complexity. The key components include:
1. Enhancement of the blood pool in the steady state  

distribution of ferumoxytol
2. A controlled and regular respiratory pattern, ensured 

by positive pressure ventilation and muscle relaxants
3. Cardiac-triggered and respiratory-gated volumetric  

acquisitions over all desired anatomy with 4D MUSIC3 
[8] and 4D flow4 (non-product) sequences, during  
uninterrupted ventilation

With the sequences we use, image reconstruction is inline 
and immediate, although the 4D flow images require  
advanced processing with commercial software. We use 
Arterys (Tempus, Chicago, IL, USA) for 4D flow processing, 
but other commercial options are available. The MUSIC  
images are immediately available as DICOM input to any 
platform with a 4D viewing option, where 2D cines can be 
reconstructed in any plane and saved to an archival (PACS) 
system. We use OsiriX (Pixmeo SARL, Bernex, Switzerland) 
on a Mac workstation.

1 Ferumoxytol is not approved for diagnostic applications and its use for MRI is off-label.
2  MR scanning has not been established as safe for imaging fetuses and infants less than two years of age. The responsible physician must evaluate the benefits of the 
MR examination compared to those of other imaging procedures. Note: This disclaimer does not represent the opinion of the author.

3 MUSIC is a prototype sequence developed at UCLA.
4 The authors are using a non-product sequence, but 4D Flow has been available as a product since software version syngo MR XA30.

12 siemens-healthineers.com/magnetom-world

Clinical · SMRA 2023Clinical · Cardiovascular Imaging



In our practice, the typical imaging time from the first 
scout sequences to completion of the last series is less  
than 30 minutes, without any requirement for breath- 
holding and irrespective of how complex the disease is. 
The covered anatomy includes the heart and the blood  
vessels of the neck, chest, and abdomen. For context,  
conventional imaging with 2D cine, 3D contrast-enhanced 
MRA, and targeted 2D flow requires repeated breath- 
holding and interactive scanning prescription that may  
take 60 to 90 minutes. Moreover, in the end, it may be that 
certain image planes that in hindsight were relevant had 
not been acquired and cannot be retrospectively recon-
structed. With the 4D approach, this is never the situation. 

Case 1
A 22-month-old1 male patient with heterotaxia and  
double outflow right ventricle (DORV) had undergone  
bilateral Glenn shunt procedures and was being assessed 
for possible bi-ventricular repair. MRI was requested to  
define cardiac chamber anatomy and size, vascular ana-
tomy, and the integrity of the Glenn shunts. The patient  
underwent general anesthesia, intubation, and controlled 
ventilation, and received ferumoxytol, 4 mg/kg, by slow  
intravenous infusion before being advanced into the bore 
of a 3T MAGNETOM Trio scanner (Siemens Healthcare,  
Erlangen, Germany). A small flex coil was positioned over 

the heart, and continuous monitoring of ECG, pulse oxime-
try, airway pressure, and non-invasive blood pressure  
was performed. Following initial scout images, a real-  
time cine series in the coronal plane was acquired over  
20 seconds to confirm satisfactory ventilatory movement 
of both hemi-diaphragms. A 4D MUSIC acquisition [8]  
was then performed encompassing the neck, chest, and 
abdomen. Non-interpolated spatial resolution was 1 mm 
isotropic, and 11 cardiac phases were acquired, gated  
to end-expiration. Following the MUSIC acquisition, a 4D 
flow sequence was run with 1.7 × 1.7 × 1.9 mm (non-inter-
polated) voxels and 45 ms temporal resolution, also during 
uninterrupted ventilation and gated to end-expiration. The 
respiratory gating efficiency for both 4D sequences was 
60% and the total acquisition time was 20 minutes (8 min-
utes for MUSIC and 12 minutes for 4D flow). The MUSIC  
DICOM images were pushed to OsiriX, Vitrea (Rishon  
LeZion, Israel), and Mimics (Materialise, Leuven, Belgium) 
workstations for multi-planar cine recon (OsiriX), volume 
rendering (Vitrea), and quantitative segmentation of 
chamber sizes (Mimics). The 4D flow DICOM images were 
uploaded to the Arterys cloud for processing. 

Results
The MUSIC images confirmed heterotaxia with a left- sided 
inferior vena cava (IVC), right-sided aortic arch, and dis-
tended hepatic veins draining to the right atrium (Fig. 1). 

1   Thin MIP reconstructions from the 4D MUSIC acquisition in OsiriX showing the venous anatomy and the right-sided aortic arch  
(HV: hepatic vein; Lt IVC: left inferior vena cava; MIP: maximum intensity projection).

13siemens-healthineers.com/magnetom-world

· ClinicalSMRA 2023 Cardiovascular Imaging · Clinical



Dynamic cardiac chamber anatomy was clearly shown,  
and chamber volumes were confidently measured (Fig. 2). 
4D flow confirmed normal hemodynamics in the aorta  
and branches, and documented the outflow pattern from 
the left ventricle to the aorta (Fig. 3). The origins and 

courses of the coronary arteries were conventional (Fig. 4). 
The left Glenn shunt was widely patent with appropriate 
flow (Fig. 5). The right Glenn was small, stenosed, and 
non-functional with minimal flow (Fig. 6). 3D frames  
from the MUSIC data were printed to help in surgical  

2   Color volume-rendered reconstructions (Vitrea) of the heart and great vessels in diastole (2A) and systole (2B) show the left Glenn shunt, 
aorta (Ao), left ventricle (LV), right ventricle (RV), and right coronary artery (RCA).

2A 2B

3A 3B

3   Frames reconstructed from the 4D flow data (Arterys) show the outflow pathway from the left ventricle to the Aorta (3A, oblique coronal)  
and normal flow patterns in the aortic arch and great vessels (3B, oblique sagittal). 
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planning and procedure simulation. Movie files for all  
figures are available as an online supplement at  
https://www.magnetomworld.siemens-healthineers.com/
clinical-corner/case-studies/ferumoxytol.  

It is important to note that, in addition to the specific  
findings noted above in this patient, the steady state  
of ferumoxytol makes every vessel in the chest, neck,  
abdomen, and pelvis clearly assessable.

4   Thin MIP reconstructions from the 4D MUSIC acquisition in OsiriX showing the right coronary artery (RCA) and left coronary artery (LCA).

5A 5B

5   Thin MIP reconstructions from the 4D MUSIC acquisition in OsiriX show anatomy of the intact left Glenn shunt (5A), and a frame from the 4D 
flow shows appropriate flow in the left Glenn (Arterys).
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Adults with congenital heart disease
Whereas anesthesia and controlled ventilation solve the 
motion artifact problem in small children, we must use  
different tools in adults.  Breath holding is generally very 
effective for 2D or 3D imaging, but for 4D flow imaging, 
some form of respiratory gating or compensation is  
needed.  Recent advances in compressed sensing (CS) 
show great promise for highly accelerated 4D flow imaging 
and ferumoxytol enhancement can mitigate much of the 
SNR penalty that aggressive undersampling imposes.  
In the example below, we illustrate how CS 4D flow and 
ferumoxytol combine to generate high quality data in a 
practical acquisition time.

Case 2
A 30-year-old male patient with congenital bicuspid aortic 
valve had undergone valve-sparing surgery for an ascend-
ing aortic aneurysm. Follow-up echocardiography showed 
aortic valve incompetence, and the patient was referred  
to MR for a more detailed evaluation. The study was per-
formed on a 1.5T MAGNETOM Sola (Siemens Healthcare, 
Erlangen, Germany). Following infusion of 4 mg/kg of  
ferumoxytol, the patient was advanced into the scanner 
bore, with two body array coils in place. The routine clinical  
acquisition protocol included multiplanar cine with breath-
hold SGE (FLASH), 3D MRA, 2D flow imaging through the 
aortic valve, and non-breath-hold HASTE imaging. 4D flow 
imaging was then performed using a research sequence 
that incorporates compressed sensing (CS) acceleration 

and a diaphragmatic navigator for respiratory gating. A CS 
acceleration factor of 12.8 was used in the current study. 
Spatial resolution was 2 mm isotropic (non-interpolated) 
and temporal resolution was 48 ms. ECG retro-gating was 
employed, and 20 cardiac phases were calculated.

Results
Cine confirmed the bicuspid aortic valve (Fig. 7A) and  
MRA showed satisfactory appearances of the surgical aortic 
graft (Fig. 7B). Respiratory gating efficiency for the 4D  
flow acquisition was 65% and the total acquisition time 
was 5 minutes 40 seconds. The image quality for the  
4D flow acquisition was excellent, with high SNR for all 
vascular structures (Fig. 8). The aortic regurgitation frac-
tion for both the 2D and 4D flow measurements was in  
full agreement at 43%. The 4D flow additionally showed 
the 3D geometry of the regurgitation jet, and provided a 
graphic depiction of the volumetric flow fields in the aorta, 
pulmonary artery, and included cardiac chambers. MRA 
confirmed the integrity of the surgical aortic graft repair, 
and cine imaging confirmed the congenitally bicuspid  
nature of the aortic valve. Additionally, cine and HASTE 
showed left ventricular non-compaction, not appreciated 
on echo.

In children with CHD, ferumoxytol has ushered in  
a paradigm shift for MRI. Because of its long half-life in  
the blood, ferumoxytol supports high-resolution 4D imag-
ing and has been used successfully in several centers at 
both 3T and 1.5T [9, 10]. When implemented with cardiac 
and respiratory gating, high-dimensional techniques such 

6   Thin MIP reconstructions from the 4D MUSIC acquisition in OsiriX show anatomy of the stenosed right Glenn shunt and the stenosed origin  
of the right pulmonary artery.
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as MUSIC and Free-Running Framework [5] can produce 
images with uniformly high contrast throughout the car-
diac chambers and blood vessels.

Ferumoxytol enhancement lays the groundwork for 
uniformly high vascular signal without concerns for satura-
tion of the blood. This effect gives a new lease of life to  
the entire family of T1-weighted spoiled gradient echo 
(SGE, FLASH) sequences that are tolerant of magnetic field 
non-uniformities and artifacts from devices. Moreover, the 
benefits apply to all field strengths. The high blood SNR 

also supports more aggressive under-sampling schemes  
for parallel imaging and, as shown in our adult case above, 
for compressive sensing in 4D flow. In the adult patient  
illustrated above, the 4D flow acquisition used an accele-
ration factor of 12.8, while maintaining high signal on the 
bright blood magnitude images. The same mechanism  
that supports high signal on the magnitude images  
supports more reliable estimation of flow-induced phase 
shifts, since the phase is less noisy if the magnitude  
signal is high [11]. It should be noted that ferumoxytol  

7A

7B

7   (7A) 30-year-old male patient with bicuspid aortic valve. Diastolic frames from 2D FLASH cine show the bicuspid aortic valve (middle panel) 
and aortic regurgitant jet (right panel). (7B) 30-year-old male patient with bicuspid aortic valve. Thin MIP reconstructions from gated MRA 
(OsiriX) post-ferumoxytol show the dimensions of the ascending aortic surgical graft and thoracic aorta (left panel).
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is a therapeutic agent that is approved by the U.S. Food 
and Drug Administration for treatment of iron deficiency 
anemia in patients at all levels of renal function [12]. It  
is not approved for diagnostic applications and its use for  
MRI is off-label. Moreover, ferumoxytol has carried a boxed 
warning since March 2015. This concerns the risk of  
anaphylactic reactions, apparently linked to rapid adminis-
tration during therapeutic use [13]. When used for MRI, 
ferumoxytol is normally infused slowly and in diluted  
form with close monitoring, and preliminary safety data  
on diagnostic use suggest an adverse event rate similar  
to the macrocyclic gadolinium agents [14]. Further data 
and analysis on the safety and diagnostic performance  
of ferumoxytol are needed, but the potential of the agent 
is clear when used appropriately.

Conclusion
In summary, we discussed the applications of 4D imaging 
in children and adult patients with congenital heart dis-
ease, illustrated with one example from each cohort. The 
combination of ferumoxytol and multi-dimensional MR  
imaging represents a powerful blend of MR technology  
and pharmacological contrast enhancement. The hope  
for the future is that, with more widespread availability of 
advanced multi-dimensional techniques and ferumoxytol 
enhancement, the true clinical potential of this approach 
will be realized in the broader community.

8A

8C 8D

8B

8   30-year-old male patient with bicuspid aortic valve. Systolic (upper row) and diastolic (lower row) frames from CS 4D flow reconstruction 
(Arterys). The left column is displayed on a bright blood background (note the high vascular signal due to the ferumoxytol) and the right 
column on a filtered black blood background. The posteriorly orientated, large aortic regurgitant jet is well-appreciated, as are the flow vectors 
throughout the arch and cardiac chambers. The regurgitation fraction was estimated at 43% both on 4D flow and 2D flow. (The exactness  
of the correspondence was surprising!)
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1   Comparing conventional FB cine (1A) and 
FB RTCS cine MoCo (1B). In conventional  
FB cine, the image is unclear and difficult 
to evaluate due to breathing artifacts. In  
FB RTCS cine MoCo, the motion correction 
technique produces a clear image even 
under free breathing.

1A 1B

Clinical Value of Free-Breathing  
Cardiac Cine MRI with Compressed Sensing 
Real-Time Imaging and Retrospective  
Motion Correction
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Introduction
Comprehensive cardiac MRI is known as a method that  
enables the evaluation of a wide variety of parameters, 
such as morphology and function by cine MRI, myocardial 
ischemia by myocardial perfusion, myocardial fibrosis  
by late gadolinium enhancement (LGE), coronary artery 
stenosis by coronary artery MR angiography (MRA),  
and quantitative blood flow by phase-contrast sequences. 
However, the burden on patients due to the long  

examination time and the high threshold for clinical use 
are a major problem. A new free-breathing (FB) cardiac 
cine MR imaging technique using compressed sensing (CS) 
real-time imaging and retrospective motion correction  
has been developed (FB RTCS cine MoCo). This new cine 
MRI imaging technique is expected to shorten examination 
time and reduce the patient burden by eliminating the 
need for breath-hold (BH). This report reviews the new  
FB cine MRI technique and its clinical value.
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Cine MRI
Cardiac cine MRI is a routine part of every cardiac MRI. 
Based on cine images cardiac morphology and quantitative 
cardiac function can be evaluated. The latter is considered 
as gold standard due to its high reproducibility [1]. Com-
pared to echocardiography, which is an important modality 
for cardiac functional assessment, cardiac cine MRI has  
the advantage of providing images without blind areas. 
Due to its anatomical and functional characteristics, cardiac 
cine MRI requires the control and management of both  
respiratory motion and cardiac motion and is generally  
performed under breath-hold (BH) to avoid respiratory  
motion artifacts. However, in conventional cine MRI using 
parallel imaging, only one to two slices of image data  
can be collected per BH, and multiple BHs are required  
to obtain images of the entire heart [2–3]. In addition,  
BH examinations require not only the cooperation of the  
patients and the time to collect data, but also the time  

for ancillary procedures such as breaks between BHs and 
BH announcements. Thus, the conventional BH cine MRI 
has been problematic due to prolonged examination  
time, increased patient burden, poor BH reproducibility, 
and poor image quality due to BH failure. A new FB  
cine MRI technique that combines CS real-time imaging 
and motion correction has been developed (FB RTCS  
cine MoCo) to address these issues. This technique is ex-
pected to shorten examination time and reduce patient 
burden through FB examination, and to improve image 
quality through motion correction. A detailed explanation 
of CS is beyond the scope of this report. Briefly, it is a tech-
nique for accelerating the reconstruction of high-quality 
images that are close to the original image from a small 
number of randomly sampled data [4], and its usefulness  
has already been widely recognized in clinical practice.

Conventional BH cine FB RTCS cine MoCo

Sequence type 2D cine bSSFP 2D cine bSSFP

Acceleration technique GRAPPA CS

TE/TR (ms) 1.4/3.2 1.4/3.2

Temporal resolution (ms) 40 43

FOV (mm) 360 × 360 360 × 360

Image matrix 192 × 125 192 × 125

Reconstructed spatial resolution (mm) 1.9 × 1.9 1.9 × 1.9

Slice thickness (mm) 6 6

No. of slices 12 12

Slice gap (mm) 4 4

Flip angle (degrees) 50 38

Bandwidth (Hz/pixel) 1302 1132

Cardiac phases 25 25

No. of BHs 6 or 12 –

Acceleration factor 3 12.5

Iterative reconstruction (n) – 60

Table 1:  Imaging parameters of conventional BH cine and FB RTCS cine MoCo.  
(BH breath-hold, FB free-breathing, RT real-time, CS compressed sensing, MoCo motion correction, bSSFP balanced steady-state 
free-precession, GRAPPA generalized autocalibrating partially parallel acquisitions, TE echo time, TR repetition time, FOV field of view)
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FB RTCS cine motion correction
In the following, we explain the data collection and  
reconstruction method of FB RTCS cine MoCo. 

1  FB RTCS cine MoCo continuously collects data for multi-
ple heartbeats per slice to ensure coverage of the end  
expiratory position. In this work, we set the acquisition 
duration to be 12 beats per slice. Considering that a  
typical respiratory cycle is about four seconds, this allows  
the end expiratory phase to be covered at least once  
for heart rates up to 180 bpm. 

2  During image reconstruction, each heartbeat is nor- 
malized to the same number of cardiac phases (25 in  
this work) through k-space data rebinning. Then, the re-
binned k-space data are sent for iterative reconstruction 
with spatio-temporal regularization. All heartbeats are 
jointly reconstructed.

3  Next, all acquired heartbeats are ranked by the amount 
of respiratory and other non-cardiac motion they  
contain. To do so, a motion score calculated for each  
heartbeat, defined as the sum of pixel-wise absolute  
difference between the first and last frames. Intuitively, 
the first and last frames should look almost identical  
absent of any respiratory or body motion, and hence  
the motion score is low. Otherwise, the two frames will 
be very different, and the motion score will be high. 

4  With the heartbeats ranked, a subset (one third in this 
work) of highest ranked heartbeats are selected. In  
addition, heartbeat data during arrhythmia that deviates 
from the median RR interval by two standard deviations 
or more is automatically excluded. Finally, each accepted 
heartbeat is non-rigidly registered to the top-ranked 
heartbeat, and the registered heartbeats are averaged  
to form the final output.

2   FB RTCS cine MoCo acquisition and reconstruction workflow.

Respiratory motion

ECG

Data acquisition

RT cine of 
each RR

Normalize with 
25 calculated 
cine phase

Sort by smaller 
respiratory 
motion

Final image of FB RTCS 
cine MoCo

The 5 bins that show the least 
movement were selected and 
averaged using non-rigid 
motion correction
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In our initial study comparing conventional multiple BH 
cine with FB RTCS cine MoCo in healthy volunteers, there 
were no significant differences in either the assessment  
of both ventricular functions or the qualitative and quanti-
tative image quality assessment, and the examination 
time was reduced [5]. Compared to a previous study of CS 
cine MRI under FB [6], FB RTCS cine MoCo improved image 
quality and reduced inter-examination error. The use of 
data from multiple heartbeats combined with motion  
correction may have been effective. Although cine MRI  
using similar motion correction techniques has been re-
ported [7], the FB RTCS cine MoCo combined with CS has 
reduced examination time and improved clinical utility.

The advantage of FB RTCS cine MoCo is that the data  
used for reconstruction is selected by directly confirming 
the heart position, so the effect of respiration is minimized  
and high-quality images can be produced even in FB. The 
FB RTCS cine MoCo would also allow for improved spatial 
and temporal resolution imaging compared to single-shot 
FB CS cine without MoCo. In addition, FB RTCS cine MoCo 
is a continuous data acquisition technique, so the examina-
tion can be completed in 12 heartbeats multiplied by the 

number of slices. Thus, FB RTCS cine MoCo may be suitable 
for cardiac hypertrophy cases because an additional slice 
does not significantly prolong the examination time.  
Although this technique is applicable to all patients, thanks 
to the reduced burden due to the elimination of BH, it is 
expected to be particularly useful for the elderly, patients 
in poor condition, children, and patients under sedation, 
who have difficulty holding their breath.

Conclusion
In the future, it would be ideal to complete all cardiac MRI 
sequences under FB. The patient would only have to get  
on the table and the examination could be completed 
while the patient is sleeping. This would greatly reduce  
the burden of the examination and increase the usefulness 
of MRI as one of the routine cardiac examinations. Recently, 
new technologies such as FB coronary MRA using CS [8] 
and FB 3D LGE combined with CS and navigation images 
[9] have also been reported. It is expected that the short-
ening of each sequence will improve the overall examina-
tion workflow.

3   Comparison of representative short-axis cine images in end-diastole. Conventional BH cine (3A) and FB RTCS cine MoCo (3B).

3A

3B
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Image analysis
The order of images was randomized prior to analysis.  
One reader blinded to the underlying technique (MP) man-
ually traced the left ventricle (LV) endocardial contours 
(QMASS 8.1, Medis Medical System, Leiden, Netherlands), 
which served as the basis for calculating quantitative LV 
parameters including end-diastolic volume (EDV), end- 
systolic volume (ESV), stroke volume (SV), ejection fraction 
(EF), and cardiac output (CO). In addition, one radiologist 
experienced in diagnostic CMR (PM, 15 years), blinded  
to the underlying technique, independently reviewed  
images from all subjects and scored image quality using  
a three-point Likert scale (1 = poor image quality and non- 
diagnostic, 2 = suboptimal image quality but diagnostic,  
3 = excellent image quality) in the following categories:  
(a) myocardial-blood pool contrast, (b) papillary muscle  
visualization, (c) atrioventricular valve leaflet visualization, 
(d) wall motion visualization, and (e) visualization of spin 
dephasing from turbulent flow.

Statistical analysis
We use paired two-tailed t-test and Bland-Altman analysis 
to compare the quantitative LV parameters (R 3.5.2,  
R Core Team, www.R-project.org). We define P = 0.05 as 
statistically significant. 

Results
Statistical analysis
All patients successfully completed the study without  
complications. The heart rates during cine exams  
were 98.9 ± 15.4 beats per minute (BPM) for BH and  
100.8 ± 14.7 BPM for RTCSCineMoCo (P = 0.47). We found 
no significant difference between the measured LV func-
tion parameters, including EDV (101.1 ± 53.1 ml for BH 
and 99.0 ± 53.5 ml for RTCSCineMoCo, P = 0.32), ESV  

(52.1 ± 36.1 ml for BH, 49.8 ± 33.3 ml for RTCSCineMoCo, 
P = 0.27), SV (49.0 ± 21.8 ml for BH and 49.3 ± 23.4 ml  
for RTCSCineMoCo, P = 0.82), EF (51.8 ± 9.7% for BH  
and 52.2 ± 8.5% for RTCSCineMoCo, P = 0.63), and CO  
(4.7 ± 1.7 L/min for BH and 4.7 ± 1.9 L/min for RTCSCine- 
MoCo, P = 0.62). The two techniques scored identically  
(3 out of 3) for all five subjective criteria. Figure 4 shows  
the Bland-Altman plots of the LV function measures. The 
mean difference, lower limit of agreement, and higher  
limit of agreement were -2.1 ml, -18.7 ml, and 14.5 ml  
for EDV, -2.3 ml, -17.6 ml, and 12.9 ml for ESV, 0.2 ml,  
-7.5 ml, and 7.9 ml for SV, 0.4%, -6.2%, and 7.1% for EF, 
and 0.1 L/min, -1.0 L/min, and 1.1 L/min for CO. The aver-
age acquisition time was 4.0 ± 1.8 min for BH (including  
all patient rest times in between slices) and 1.7 ± 0.4 min 
for RTCSCineMoCo (P < 0.001). For RTCSCineMoCo, the  
average reconstruction delay between the end of short  
axis stack acquisition and all images becoming available 
was 5.2 ± 1.9 min.

Image examples
Figure 5 shows example images of both diastole and  
systole phases at mid-ventricular slice positions from four 
patients, with ages ranging from 11 weeks to 12 years.  
Figure 6 shows additional cardiac views obtained with 
RTCSCineMoCo in one patient.

Discussion
In this work, we proposed a new free-breathing cardiac 
cine technique, RTCSCineMoCo, which offers several  
advantages over existing techniques for cardiac cine imag-
ing. First, the free-breathing acquisition considerably  
improves patient experience and may allow more robust 
image quality for those who have difficulties holding their 
breath or uncooperative subjects such as young children. 

5   Example BH and RTCSCineMoCo images from four patients across the age range, showing comparable image quality between the two 
techniques. Images have been cropped to only show the heart and surrounding anatomy.

Diastole Systole

BH
RT

CS
Ci

ne
M

oC
o

Subject 01 (male, 4 years, 13 kg, 114 bpm, Fontan) Subject 05 (male, 12 years, 40 kg, 106 bpm,  
Kawasaki with left coronary artery aneurysm)

Subject 07 (male, 9 years, 34 kg, 89 bpm,  
total anomalous pulmonary venous return repair)

Subject 13 (male, 11 weeks, 3.5 kg, 111 bpm,  
tricuspid atresia)

Diastole Systole

BH
RT

CS
Ci

ne
M

oC
o

Diastole Systole

BH
RT

CS
Ci

ne
M

oC
o

Diastole Systole

BH
RT

CS
Ci

ne
M

oC
o

4   Bland-Altman plot of the left ventricle (LV) end-diastole volume (EDV), end-systole volume (ESV), stroke volume (SV), ejection fraction (EF), 
and cardiac output (CO). Solid lines indicate the mean difference and dashed lines show the limits of agreement.
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Image acquisition
Image acquisition uses a prototype real-time cardiac cine 
sequence with prospective ECG gating, incoherent Carte-
sian sampling, and balanced steady-state free precession 
(bSSFP) readout [19, 20]. The acquisition spans 12 heart-
beats for each imaging slice, which we empirically found  
to be sufficient for covering multiple respiratory cycles and 
hence capturing the heart in a stationary respiratory phase 
at least once. The patient specific acceleration factor is set 
such that the resulting temporal resolution approximately 
equals to the average RR duration divided by the number 
of desired cardiac phases. Hence, for a given number of  
desired cardiac phases, the higher the patient heart rate, 
the higher the acceleration factor.

Reconstruction of normalized heartbeats
We first remap each acquired k-space line into a cardiac 
phase based on its relative position within the respective 
RR duration using a simple linear formula:

where trigger delay is the time between the current echo 
and the most recent ECG trigger, and the RR durations  
are derived from the trigger delay times of all acquired 
lines. This operation normalizes the heart rate variation 
and ensures each heartbeat contains the same number  
of frames, which is necessary in the subsequent motion 
correction and averaging step. We also discard any data  
acquired after the last recorded R wave, as they usually  
do not cover a complete heartbeat. Lastly, we reconstruct 
all normalized heartbeats jointly using iterative reconstruc-
tion with redundant Haar wavelets for spatiotemporal  
regularization [19, 20]. 

Heartbeat ranking and motion corrected averaging
After reconstruction, we first perform time-based arrhyth-
mia rejection by rejecting those heartbeats with RR  
durations more than two standard deviations away from 
the median RR duration. Then, the remaining normalized 
heartbeats are ranked by the presence of respiratory  
motion. Such ranking serves as the basis for selecting the 
reference heartbeat and deciding which of the heartbeats 
to keep for further processing. Several previous works  
proposed deformation-based navigators for detecting  
respiratory motion from real-time cine images (25–28), 

which generally involve first performing non-rigid registra-
tion between each real-time frame and an arbitrary  
reference, and then extracting a scalar, low-pass filtered 
respiratory navigator signal from the deformation vector 
fields. In this work, we propose an image-based, one-step 
alternative, which we describe in detail below. 

Consider a real-time, multi-heartbeat cine image series  
acquired under free-breathing. We observe that an ideal 
heartbeat should appear as a near perfect loop due to the 
cyclic nature of cardiac motion. Otherwise, in the presence 
of respiratory or general bulk motion, the heart and its  
surrounding anatomy will not return to its original shape 
and position at the end of the heartbeat, since non-cardiac 
motion is usually of lower frequency or non-cyclic. To  
determine the amount of non-cardiac motion in each 
heartbeat, we therefore define a motion score as the sum 
of pixel-wise absolute difference between the first and  
last frame of each heartbeat:

Cardiac Phase  
within RR 

Desired Number  
of Phases per RR×= ceiling ( )Trigger Delay

RR Duration
The lower the score is for a given heartbeat, the more  
similar the first and last cine frames are, and the less 
non-cardiac motion the heartbeat contains. Figure 2 shows 
the motion scores and absolute difference images from an 
example dataset containing 12 consecutive heartbeats.

After calculating the motion scores, we accept a subset 
(typically one third) of the highest ranked heartbeats  
for further processing. With the top-ranked heartbeat  
as the reference, we register each cardiac frame in each 
 accepted heartbeat to the corresponding cardiac frame  
in the reference beat via non-rigid registration [28], and 
then compute the average of all registered heartbeats as 
the final output, which has higher SNR than the original  
images from individual heartbeats due to averaging.

In vivo study
Study protocol
With institutional IRB approval and written consent form 
(by guardians for underage patients), we acquired both 
breath-hold segmented cine with retrospective ECG gating 
(BH) and free-breathing RTCSCineMoCo images, in random 
order, on 15 patients using a clinical 1.5T MR scanner 
(MAGNETOM Aera, Siemens Healthcare, Erlangen,  
Germany). Figure 3 shows the patient demographic data: 
7.3 ± 5.4 years, range 11 weeks – 19 years; weight  
29.7 ± 25.6 kg, range 3.5–106.0 kg; 12 males. Clinical  

Score of Beat =  ∑  |First Frame of Beat – Last Frame of Beat| 
All pixels

1  MR scanning has not been established as safe for imaging fetuses and infants less than two years of age. The responsible physician must evaluate the benefits of the 
MR examination compared to those of other imaging procedures.

indication of these patients include: ductal origin of pulmo-
nary artery, Fontan (N = 2), Kawasaki with left coronary  
artery aneurysm, left ventricle dilation, left ventricle non- 
compaction cardiomyopathy and ventricular ectopy, Mar-
fan syndrome, post COVID-19 myocarditis, right ventricle 
dominant atrio ventricular septal defect, supraventricular 
tachycardia, tetralogy of Fallot (N = 2), tetralogy of Fallot 
post repair (N = 2), total anomalous pulmonary venous  
return repair, and tricuspid atresia.

The sequence parameters were as follows: 11–14 
short axis slices, balanced steady-state free precession 
readout, flip angle = 58–90°, 25 calculated cardiac phases, 
in-plane resolution = 1.2–1.8 mm for BH, 1.4–2.0 mm  
interpolated to 0.7–1.0 mm for RTCSCineMoCo, slice  
thickness = 5.0–9.0 mm; GRAPPA factor = 2 for BH; CS  
acceleration factor = 9.6–19.2 for RTCSCineMoCo. In  
certain subjects we additionally acquired other cardiac 
views, such as four-chamber (4CH), left ventricle outflow 
tract (LVOT), right ventricle outflow tract (RVOT), and  
vertical long axis (VLA).

3   The study population covers a wide range of age (11 weeks1 to  
19 years) and weight (3.5 to 106.0 kg). 
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2   Visualization of the proposed motion score (pixel sum of the absolute difference between first and last cardiac phases of a given heartbeat) 
from 12 consecutive heartbeats from an example subject; the bottom figures show the pixel-wise absolute difference for all heart-beats; in 
this example, beat 10 has the lowest score (highest consistency) and is selected as the reference for respiratory motion correction.
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Introduction
Cine MRI is an important diagnostic tool for evaluating  
cardiac function [1, 2] and an essential part of most  
cardiac magnetic resonance (CMR) protocols [3]. The  
current standard technique, 2D segmented acquisition 
with retrospective electrocardiogram (ECG) gating [4],  
requires the patient to hold their breath during the 
multi-heartbeat data acquisition [5]. This breath-holding 
maneuver is typically repeated 10 to 20 times, with breaks 
in between, to acquire all desired slice orientations.  
However, breath-holding is often uncomfortable, and  
can be difficult for many types of patients such as those 
with congestive heart failure or chronic obstructive pulmo-
nary disease. Furthermore, for uncooperative patients  
such as young children1, reliable breath-holding may only 
be achieved via mechanical ventilation under general  
anesthesia, which adds to the cost, risk, and complexity  
of a CMR exam [6]. Breath-holding also disrupts the exam 
workflow as the operator must set up or repeatedly give 
breath-hold commands, check the image quality, and reat-
tempt the scan when necessary. Therefore, free-breathing 
cine MRI is desirable for improving patient experience,  
simplifying workflow, and achieving robust image quality 
in wider patient population.

Previous works have proposed different strategies for 
free-breathing cardiac cine imaging, which we categorize 
into three classes. 

One class of methods enhances segmented acquisition by 
adding respiratory monitoring, typically through external 
monitoring devices [7, 8] or self-navigation [9, 10] since 
there is no gap in the continuous cine acquisition for  
inserting conventional MR navigators [11]. These methods 
then use the respiratory motion information to either reject 
or correct the acquired k-space data. Such free-breathing, 
segmented techniques generally maintain the spatiotem-
poral resolution compared to the conventional breath-hold 
technique. However, the imaging time is often longer due 
to respiratory gating. The external respiratory monitoring 
can be unreliable and time-consuming to set up. And any 
respiratory pattern drift or errors in the respiratory signal 
can lead to residual motion artifacts due to inconsistencies 
between k-space segments. 

A second class of methods, real-time imaging, acquires 
a cine frame in one shot and thus eliminates potential 
shot-to-shot inconsistencies in segmented acquisition  
[12–22]. To achieve this goal, these methods use highly 
accelerated acquisition such as echo-planar imaging [12], 
view sharing [14], parallel imaging [13, 15], non-Cartesian 
imaging [16], iterative reconstruction [17–20], and  
machine learning reconstruction [22]. The spatiotemporal 
resolution is often reduced compared with segmented 
techniques, although recent advances in acceleration 
methods have closed the gap considerably. Furthermore, 

real-time cardiac cine images often require additional steps 
in post-processing to identify the end-systole and end-dias-
tole phases slice by slice and to ensure the consistency of 
respiratory phases between slices [23, 24].

Another class of methods extends real-time imaging  
by introducing retrospective motion processing [25–28]. 
Based on multi-heartbeat real-time cine acquisition, these 
methods use image-based metrics to detect respiratory 
motion, select a subset of heartbeats, perform respiratory 
motion correction, and then combine motion corrected 
data through either direct averaging in image space [25, 
28] or k-space rebinning and a second reconstruction [26, 
27]. These motion processing steps effectively suppress  
respiratory motion artifacts, enhance signal-to-noise ratio 
(SNR) by exploiting data redundancy after motion correc-
tion, and are compatible with established image analysis 
workflows since the output image series contains only  
one normalized cardiac cycle and a set number of frames 
per slice. However, the image reconstruction is often com-
putationally intensive and can take a long time to finish. 
This can be addressed by running the reconstruction on 
powerful external hardware connected to clinical scanners 
[27, 29], yet the associated investment and technical  
complexity limit the feasibility at most centers. 

In this work, we propose a prototype free-breathing 
cardiac cine imaging technique, real-time compressed 
sensing cine with motion correction (RTCSCineMoCo), that 
runs on existing scanner hardware and combines highly 

accelerated real-time acquisition, compressed sensing (CS) 
reconstruction, and retrospective, fully automated respira-
tory motion correction. We compare RTCSCineMoCo with 
the standard breath-hold technique on patients undergo-
ing routine CMR exams at a single pediatric center in terms 
of quantitative cardiac function measurements and subjec-
tive image quality scores.

Materials and methods
Free-breathing cardiac cine MRI
Overview
Figure 1 shows the RTCSCineMoco acquisition and recon-
struction workflow: 
(1) acquiring real-time cine data over multiple heartbeats 

and respiratory cycles; 
(2) remapping the acquired k-space data based on trigger 

delay so that all heartbeats contain the same number 
of cardiac phases; 

(3) reconstructing the now normalized heartbeats; 
(4) ranking the heartbeats based on detected respiratory 

motion and arrhythmia; 
(5) accepting a subset of highly ranked heartbeats; 
(6) performing non-rigid registration of the accepted 

heartbeats to the top ranked reference heartbeat; 
(7) computing the average of the registered heartbeats as 

the output. We describe these steps in detail below.

1  MR scanning has not been established as safe for imaging fetuses and infants less than two years of age. The responsible physician must evaluate the benefits of the 
MR examination compared to those of other imaging procedures. 1   The RTCSCineMoCo acquisition and reconstruction workflow.
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Clinical need
A broad spectrum of clinical use cases for cardiovascular 
magnetic resonance imaging (CMR) profit from high iso-
tropic resolution in three dimensions to show thoracic  
vasculature including the small and tortious coronary  
artery vessels and fibrosis/myocardial viability using the 
late gadolinium enhancement (LGE) measurement  
technique. Recent clinical studies have demonstrated the 
value of free-breathing, high-isotropic-resolution CMR  
to diagnose ischemic heart disease using coronary artery 
and vein [1, 2] or LGE imaging [3], cardiomyopathy [4], 
congenital [5] and structural [6] heart disease, and abla-
tion lesion assessment [7].

Challenges
One challenge of using a high isotropic resolution in the 
range of 1 mm3 to 1.3 mm3 in the context of CMR exams is 
the prolonged scan time when compared to other imaging 
methods. Although CMR has several benefits including 
high tissue contrast and no need for radiation, it remains  
a comparatively slow imaging modality. For whole-heart 
coverage with high isotropic resolution, a novel imaging 
strategy is required to complete scans in 5 to 10 minutes.

Ideally, these measurements should be acquired in  
free breathing. Hence, cardiac and respiratory motion  
must be addressed. To minimize cardiac motion, scanning 
should be performed during a time in the cardiac cycle 
when the heart is in its quiescent phase, usually at end- 
diastole with a window of 80–160 ms, depending on the 
heart rate. To find the still phase of the heart, a 4-chamber 
cine is usually acquired. An experienced operator needs  
to manually define it and then enter it correctly in the 3D 
measurement protocol. 

To account for respiratory motion, navigators are typically 
used to scan during free breathing. The frequently used  
1D cross-paired diaphragm navigators are manually placed 
on the liver dome, and imaging data are accepted only  
in end-expiration. Depending on the breathing pattern,  
the acceptance rate can be between 20% and 60%.  
Therefore, scan time is unpredictable upfront, and a  
drift in breathing pattern during the scan may further  
decrease acquisition efficiency.

Moreover, accepting data only in end-diastole and  
in end-expiration makes data sampling very inefficient. 
Long scan times result in high institutional costs and are  
a discomfort for sick patients, meaning they can result in 
patient movement (reduced patient compliance) and 
non-diagnostic images. 

One method to overcome this hurdle is the “free- 
running” acquisition approach, which samples and uses  
all data irrespective of the breathing and cardiac-motion 
states, with separation of these during image reconstruc-
tion [8, 9]. While this single-click method has numerous 
benefits that have been shown in multiple publications,  
it has not yet been widely distributed and tested clinically 
because it requires high-end computing, long reconstruc-
tion times, and often the use of contrast agent.

Another way to account for respiratory motion is to 
use image-based navigators [10] combined with non-rigid 
motion-compensated reconstruction. This enables predict-
able scan times and an acceptance rate of 100% of data  
irrespective of the breathing position. When combined 
with novel undersampling strategies [11, 12], a scan time 
of 5 to 8 minutes is possible, while the reconstruction only 
needs to address respiratory-motion compensation and 
k-space undersampling. 

3D Whole Heart is work in progress. The application is currently under development and is not for sale in the U.S. and in other countries. Its future availability cannot be 
ensured.
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A third challenge for 3D imaging is the workflow,  
including positioning of multiple objects like navigators, 
saturation bands, and imaging volume, and determining 
the appropriate resting phase in the cardiac cycle as  
mentioned above. For the LGE measurements, correctly  
estimating inversion time (TI) to null healthy myocardium 
is yet another task for operators. 

Finally, robust fat saturation is key for high-contrast 
display of the coronary arteries, as they are embedded in 
epicardial fat. For certain LGE applications, the separation 
of fat and water is also essential, e.g., in patients with  
pericarditis or small endomyocardial fibrosis, where it can 
be difficult to distinguish between fat and lesion.

The solution 
To overcome the limitations of 1D diaphragmatic naviga-
tors, 2D image navigators (iNAV) have been proposed to 

enable direct tracking of the impact of respiratory motion 
on the heart [9]. With iNAV imaging, it is possible to derive 
accurate quantitative motion information in two spatial  
dimensions. This enables retrospective motion correction 
rather than prospective gating, resulting in 100% respi-
ratory scan efficiency and predictable scan times. 

While iNAV imaging allows for direct correction  
of beat-to-beat translational respiratory motion in a  
predefined image region, accounting for non-rigid motion 
during the breathing cycle requires a more complex, 
non-rigid motion-compensated reconstruction framework. 
A first step in such approaches is often data binning,  
followed by reconstruction of different bin images repre-
senting the different respiratory motion states present in 
the data. As each bin image only contains a small fraction 
of the already undersampled 3D acquisition, reconstruction 
of the individual bin images requires a well-designed inter-
play of acquisition patterns and reconstruction algorithms. 

1   Clinical partners for validating the 3D Whole-Heart application 
Our clinical partners helped us by sharing their experience so we could improve the research sequence and make it robust for a wide range  
of clinical questions and settings.
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AutoRestingPhase is based on a 4-chamber-view cine  
to determine the quiescent phases of different cardiac 
structures within the cardiac cycle. First, the right coronary 
artery (RCA) and the four chambers of the heart are auto-
matically detected. Subsequently, their motion throughout 
the cardiac cycle is tracked via image registration and then 
quantified and displayed as a motion curve. The valleys  
in this motion curve serve as suggestions for the whole-
heart acquisition window. Different types of whole-heart 
acquisition can use the resting phase results of different 
anatomies of interest, e.g., the RCA for T2-prepared angi-
ography or the left ventricle for 3D LGE.

AutoTI is based on a TI scout in short-axis orientation, 
which is segmented to find the myocardial and blood-pool 
intensity values at each inversion time. The minimum of 
the myocardial intensity curve is first used to determine a 
TI with optimal myocardial nulling, then refined by finding 
an adjacent TI time with improved blood-myocardium con-
trast in case both have their zero crossings at similar times. 
An offset can then be applied automatically to subsequent 
LGE acquisitions to account for the time between TI scout 
and LGE acquisitions. This is applicable both to conven-
tional 2D LGE and the novel 3D LGE acquisition.

The combination of these modules significantly reduces 
the complexity and workload involved in performing 
high-quality whole-heart acquisitions, and simplifies or 
even improves the entire scan workflow.

The variable-density Cartesian trajectory with spiral profile 
order sampling (VD-CASPR) [11, 12] provides high overall 
undersampling factors while maintaining favorable under-
sampling properties when data is split up into respiratory 
bins, enabling regularized reconstruction of artifact-free 
respiratory bin images [13]. These bin images can then  
be used to estimate 3D non-rigid motion between the  
motion states they represent, and motion information can 
be used in a final, non-rigid motion-compensated recon-
struction of all data [14, 15]. Despite the large number  
of steps involved, the computational burden in the form  
of reconstruction time can be minimized to orders of  
1 to 2 minutes using implementations with modern GPU  
technology [16].

In addition to standard chemical shift-based fat satura-
tion methods, the described approach can be combined 
with Dixon-based fat-water separation. This provides a 
means to achieve robust elimination of fat from the final 
water-only image [17, 18], while also providing a fat-only 
image that can enable, e.g., discrimination between bright 
myocardial scar signal and fatty infiltration (Figure 2).  
Dixon fat-water separation enables improved visualisation 
of the coronary arteries [18], especially at 3T.

Workflow automation
As previously described, whole-heart imaging has typically 
increased the workload and requires more experienced  
operators given the need for precise positioning of satura-
tion bands, image navigator, resting phase, and potentially 
TI. Together with the novel whole-heart sequence, we now 
offer workflow support for many of the planning steps that 
previously required manual user input. 

In the following, we describe three modules for  
automating common planning tasks: AutoPositioning  
(for placement of graphical objects, e.g., the imaging vol-
ume, navigator, saturation bands) [19]; AutoRestingPhase 
(to determine a suitable acquisition window during the 
quiescent period in the cardiac cycle) [20]; and AutoTI  
(to set the proper inversion time for subsequent LGE  
imaging) [21].

AutoPositioning is based on localizer scans in coronal 
and transversal orientations. It uses deep learning to detect 
multiple anatomical structures, including the location and 
size of the heart and left ventricle, as well as the location 
of the liver dome and the arms. These are used to automat-
ically perform the subsequent planning steps. Based on an 
initial localizer, the heart is placed into the isocenter, and 
further localizers centered on the heart can be acquired. 
Slices for thorax overview imaging and the AutoAlign scout 
can be positioned. For the whole-heart sequence, the  
imaging volume including slice coverage and position  
of the image navigator and saturation bands can be set  
automatically. 
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2   A 60-year-old male patient with fibrofatty 
replacement in LGE of the free wall of the  
RV and LV. Cine imaging 4-chamber view in  
a diastolic phase (2A) and systolic phase (2B). 
The 3D whole-heart technique allows a 
differentiation between fibrosis (2C) in 
water-only LGE images and fat deposits (2D) 
in fat-only images. Fat deposition is depicted 
by the white arrows. Fibrosis is depicted  
by the orange arrows.  
CMR imaging was performed on a 1.5 Tesla 
scanner (MAGNETOM Avanto fit, Siemens 
Healthcare, Erlangen, Germany) using cine 
imaging steady-state free precession (SSFP). 
After application of gadolinium-based 
contrast media (gadoteridol 0.2 mmol/kg), 
image-based navigated 3D whole-heart LGE 
sequence with fat–water separation was 
performed. 
Images courtesy of Edyta Blaszczyk, MD1,2,3, 
and Jeanette Schulz-Menger, MD1,2,3,4

2C 2D

1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, 
Berlin, Germany. 2Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité Medical Facul-
ty and the Max-Delbrück Center for Molecular Medicine. 3DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany. 4HELIOS Hospital Berlin-Buch, 
Department of Cardiology and Nephrology, Berlin, Germany.

3   53-year-old male patient. (3A) Sustained VTs, MVR (MVP),  
DCM like phenotype of HF. (3B) Identify potential ablation targets 
from 3D corridors of border zone tissue and verify the detected 
corridors directly with the DICOM images.  (3C) Import pre-proce-
dural imaging into any electroanatomic mapping (EAM) system. 
Agreement of the structural arrhythmogenic substrate detected as 
corridors by CMR 3D LGE and the sites of electrical channels that 
may serve as the isthmus of VT. Late potentials and local abnormal 
ventricular activities at the areas of structural VT corridors.  
CMR imaging was performed on a 1.5 Tesla MAGNETOM Sola 
(Siemens Healthcare, Erlangen, Germany).  
Images courtesy of Evangelia Nyktari, M.D. (CMR); Athanasios 
Saplaouras, M.D. (EP lab); Konstantinos Letsas, M.D., Ph.D. (EP lab); 
Michalis Efremidis, M.D., Ph.D. (EP Lab); P Rozos and S Zarkadoulas 
(CMR) at Onassis Cardiac Surgery Center, Athens, Greece.

3A

3B 3C

2A 2B
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Technical partner for developing  
the 3D Whole-Heart application
The whole-heart imaging sequence, image navigator, and 
image reconstruction framework described here were de-
veloped in close collaboration with the research groups of 
Professor René Botnar and Professor Claudia Prieto at King’s 
College London, UK.

Conclusion and outlook 
Clinical validation, resp. research studies, and feedback 
from numerous global sites indicate that implementing  
the novel 3D Whole-Heart sequence from Siemens  
Healthineers makes scans with whole-heart coverage  
and high isotropic resolution routinely possible in 5 to  
10 minutes. Given the high level of automation available  
to support operators and achieve faster scan times, we  
expect rapid clinical adoption.
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Artificial Intelligence: Learning About  
the Future of Cardiovascular MR
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2University Hospital Tübingen, Germany

Over the past 40 years, cardiovascular magnetic resonance 
(CMR) has evolved from an esoteric research tool to an  
indispensable clinical tool that routinely changes patient 
management across the breadth of modern cardiovascular 
practice. CMR is a versatile, non-invasive imaging modality 
that provides a comprehensive assessment of multiple  
parameters for cardiac function and morphology in a single 
protocol. It plays a major role in the diagnosis and manage-
ment of cardiovascular disease (CVD). The prevalence of 
CVD is increasing annually and the conditions are among 
the leading causes of morbidity and mortality worldwide. 
This requires improvements in assessing, diagnosing, treat-
ing, and monitoring CVD patients. CMR will play a central 
role in achieving these goals. However, there remain major 
challenges for the widespread use of this technique: 
(a) Complex technology with many pulse sequences  

and parameters to choose from
(b) Manual data analysis and interpretation
(c) Inherent cardiac and respiratory motion
(d) Duration of the examination

Methods using artificial intelligence (AI) have been pro-
posed to address these challenges, but have also given rise 
to new questions about the methods’ reliability, accuracy, 
generalizability, and robustness. In order to shape the  
future of CMR and establish where and how AI can play  
a role in it, we will showcase some CMR applications and 
scenarios that reflect the abovementioned challenges.  
We will highlight some AI methods for each step of the 
CMR processing chain and conclude with thoughts on  
remaining challenges and opportunities.

Learning about the heart in higher 
dimensions
CMR enables the acquisition of morphological, functional, 
and quantitative tissue parameters. Various sequences are 
devised that represent powerful tools for the non-invasive 
characterization of congenital or acquired CVDs, including 
ischemia, valvular diseases, and ischemic and non-ischemic 
cardiomyopathies. Cardiac function is commonly assessed 
with continuous acquisitions (cine, real-time) over multiple 

cardiac cycles. Perfusion imaging permits the assessment 
of physiologic and pathophysiologic functional parameters. 
First-pass perfusion is the clinical standard for measuring 
myocardial blood flow and detecting myocardial ischemia. 
Cardiac viability is traditionally studied with a gadolinium- 
based contrast agent in late gadolinium enhancement.  
Cardiovascular flow by phase-contrast imaging measures 
the velocity of blood in the cardiac chambers and great 
vessels. Coronary magnetic resonance angiography (CMRA) 
has the potential to diagnose coronary artery diseases. 
Quantitative CMR techniques like T1, T2, or T1rho mapping 
provide characterization of tissue properties that distin-
guish healthy from diseased tissue. More recently, MR  
fingerprinting1 and MR multitasking have been proposed to 
provide multi-parametric data in a continuously measured 
acquisition under a free-movement scenario (with respira-
tion and a beating heart). Multi-parametric CMR offers  
the promise of a more accurate diagnosis, early disease  
detection, and monitoring over time or of response to  
therapy [1].

These applications require either high spatial and/or 
temporal resolution, should ideally be acquired in 3D with 
whole-heart coverage to avoid slice misalignments or to 
allow reformatting into arbitrary image orientations, or  
are susceptible to cardiac and respiratory motion. The 
achievable image quality must be sufficient to detect  
and characterize CVDs, and is thus an inherent trade-off 
between imaging resolution, scan time, and signal-to-noise 
ratio (SNR), which are overall challenging requirements to 
meet. Moreover, to fully utilize the available information 
and/or to resolve the individual factors (motion, relaxivity, 
perfusion, etc.), joint data processing of all acquired data 
should be performed. This in turn yields high-dimensional 
data processing for CMR. To give an example, 5D cine  
imaging provides 3D spatial information of respiratory  
(1D) and cardiac (1D) motion-resolved data. If we jointly 
reconstruct motion-resolved data, we can share spatiotem-
poral information, i.e., sharing samples at a spatial location 

1 MR Fingerprinting is not commercially available in some countries.  
Due to regulatory reasons its future availability cannot be ensured.
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between different respiratory/cardiac motion states by  
accounting for the underlying motion between motion 
states. The benefit is increased sampling efficiency and 
higher sampling density, which in turn can result in  
improved image quality. Furthermore, high-dimensional 
data processing naturally lends itself to the combination of 
several data processing steps, as shown in Figure 1. In our 
5D cine example, the image reconstruction is combined 
with a motion correction/estimation procedure. The combi-
nation could also expand across several processing steps 
and we could develop a single AI network that performs 
this task for us. Let us say we are actually interested in  
assessing the left ventricular function using the 5D cine  
imaging. We could thus combine reconstruction, motion 
estimation, and image segmentation (to obtain left ven-
tricular functional parameters) using as input the acquired 
MR raw data and outputting the left ventricular functional 
parameters (ejection fraction, end-systolic volume, and  
so on). While joint processing has its benefits, one could 
also be interested in obtaining the intermediate results of 
this joint processing chain – to perform quality assurance, 
for instance, or to further visually assess morphology  
and function. However, depending on the selected setup,  
architecture, and scenario, this may no longer be easily 
possible. On the other hand, we could have developed  
individual and finely tuned AI networks for each of the 
tasks. For the 5D cine example, an image reconstruction 
network is followed by an image registration network that 
merges individually reconstructed motion states on which 
a subsequent image segmentation network is performed. 
Intermediate results (reconstructed image, motion fields, 
segmentation masks) would be available, but we would 
lose the possibility to share information between and  
within processing steps. 

While the concepts of joint processing sound intriguing 
and have already been studied in several research  
settings, applying them to a clinical scenario in a reliable 
fashion is challenging. Furthermore, high-dimensional  
AI-based data processing is not trivial and currently still  
limited in most cases by the available graphics processing 
unit (GPU) memory and the availability of network building 
blocks to process data beyond 3D [2].

AI forming the CMR workflow 
For a conventional CMR examination, several indi vidual  
sequences are acquired, for which different processing 
steps are conducted. These include image acquisition,  
image formation, and diagnosis, as illustrated in Figure 1. 
These processing steps could be performed individually 
with highly optimized and tuned AI networks, or several 
steps could be combined end-to-end for outputting multi-
ple results in so-called multi-tasking networks. While AI  
has the potential to improve each step of the imaging  
pipeline, it should be seen as a support for clinicians, not  
a replacement.

Scanning and planning
The most tedious and time-consuming part of CMR is  
planning the cardiac scan. The image quality depends on 
the experienced technician responsible for acquiring the 
data, and uncertainties might be introduced by incorrect 
planning. AI has the potential to speed up the whole plan-
ning workflow, resulting in increased patient comfort and 
reduced healthcare costs. Also, AI-supported planning  
allows for more standardized cardiac scans and reduces the 
complexity of cardiac view planning. Siemens Healthineers 
provides a solution for AI-based view planning with its  
myExam Cardiac Assist tool [3, 4].

Reconstruction
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1   Overview of clinical workflow supported by several artificial intelligence (AI) methods. Different AI solutions along the imaging and processing 
chain are illustrated for cardiac cine imaging. The inputs and outputs of the proposed AI techniques are also shown.
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Image reconstruction
Traditional image reconstruction techniques suffer from 
long reconstruction times and limitations in acceleration 
under Cartesian sampling patterns. Furthermore, prior 
knowledge of the reconstructed images needs to be incor-
porated into the reconstruction procedure. However, this 
prior information is often too simple to characterize the 
complex medical images. AI provides the opportunity to 
gain this prior knowledge directly from the data. Dictionary 
learning is an early example of data-driven learning in 
Compressed Sensing (CS)-based MRI reconstruction, and 
involves learning directly from undersampled data how the 
individual dictionary entries should be combined. AI-based 
solutions now achieve image quality similar or superior  
to classic CS-based approaches, while reducing the recon-
struction time tremendously from minutes and hours to 
seconds. Furthermore, the learned priors can deal with the 
characteristic, coherent backfolding artifacts that appear  
in Cartesian sampling schemes, which are standard in the 
clinical workflow.

However, learning only a data-driven image prior is  
not enough, and special care needs to be taken with the 
acquired k-space data. While purely image-driven networks 
are able to produce realistic-looking images, the images 
themselves are not consistent with the acquired k-space 
data. We refer the interested reader to a previous article  
in MAGNETOM Flash and to book chapters [5, 6] for more 
information on how to include the acquired k-space into a 

reconstruction network. In the current article, we focus on 
the application of AI-based solutions to (high-dimensional) 
CMR, including static and dynamic imaging.

Fuin et al. proposed a multi-scale variational network 
for CMRA [7]. For this static application, the reconstruction 
time could be reduced from ~5 minutes for a CS-based  
approach to ~14 seconds for the proposed learning-based 
approaches. Comparable image quality was achieved  
between the fully sampled reference scan and the 9×  
accelerated scan. The results show that the acquisition 
time can be reduced from 18:55 minutes for the fully  
sampled reference scan to 2:34 minutes for the 9× acceler-
ated acquisition, while the image quality stays comparable. 

An alternative approach for shortening the scan time 
while simultaneously increasing spatial resolution is to  
use AI-based super resolution. Images are acquired at a low 
image resolution and retrospectively reconstructed to the 
high-resolution target. This approach has been successfully 
applied to cardiac cine [8, 9] and CMRA [10, 11].

In the context of cine image reconstruction, Schlemper 
et al. proposed a data-consistent convolutional neural  
network (CNN), performing alternating single-coil data- 
consistency steps and image denoising with a 5-layer CNN 
[12]. This approach was improved by a recurrent approach 
to propagate information through the time dimensions and 
between iterations [13]. Separated convolutions in the  
spatial domain and temporal domain further improve  
reconstruction quality, yielding more accurate functional 

2   Physics-guided deep learning-based image reconstruction for cardiac cine imaging. High imaging acceleration (15×) enables the acquisition of 
a 3D cardiac cine with isotropic resolution and left ventricular coverage in a single breath-hold of < 10 seconds. A deep learning-based image 
reconstruction, CINENet, provides high image quality in contrast to the zero-filled reconstruction (input to network) or a Compressed Sensing 
(CS) reconstruction. CINENet reconstruction of accelerated scan (9 seconds) is in good accordance with a separate (slightly accelerated, 2.5×) 
3D cine (30 seconds) and a conventional multi breath-hold 2D cine (260 seconds). The 3D cine with CINENet reconstruction shows high 
agreement with the conventional 2D cine in terms of left ventricular ejection fraction (EF).
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parameters [14] and allowing for accelerated 3D cine  
reconstruction [15]. An example for accelerated single-
breath-hold 3D cine reconstruction compared to conven-
tional multi-slice multi-breath-hold 2D reconstruction  
is depicted in Figure 2. The aforementioned approaches  
operate directly on the full image, but low-rank and sparse 
priors are less frequently studied. Building on the success 
of unrolled networks, recent works focus on learning  
a structured low-rank prior [16] or low-rank plus sparse  
decomposition [17] in the context of dynamic MRI  
reconstruction.

While most approaches apply CNNs primarily in the  
image domain, hybrid networks exploit information in 
complementary domains. Due to the dynamic component 
in cine images, we can exploit the data in various domains. 
Exploiting all available data in various spaces pushes the 
reconstruction results further. El-Rewaidy et al. use both 
k-space and image domain information for radial imaging, 
implementing CNNs in both domains [18]. Complementary 
information in k-t and x-f space was studied in Qin et al. 
[19].

All aforementioned reconstruction approaches assume 
that fully sampled training data are available. The fully 
sampled data serve as a reference during training. How-
ever, training data is not always available, and is sometimes 
even impossible to acquire. Yaman et al. proposed a self- 
supervised learning approach that uses only the acquired 
training data points, with application to late gadolinium 
enhancement as depicted in Figure 3 [20]. The sampled 
data points are split into two disjoint sets, where the first 
set is used in the data consistency units of the unrolled  
reconstruction network, and the second set is used to eval-
uate the loss function during training directly in k-space.

Image analysis
CMR image segmentation and quantitative evaluation can 
be a challenging, time-consuming, and operator-intensive 
task. Segmentation of the chambers and myocardium is a 
mandatory postprocessing task. Automation of these tasks 
can therefore significantly reduce the time required for 
CMR image assessment. 

AI-based solutions for image segmentation have been 
shown to be highly accurate and fast [21]. Considerable 
efforts have been directed toward cine imaging, as it is 
considered the gold standard for the assessment of cardiac 
chamber volumes and function [22]. The work of Morales 
et al. provided additional myocardial strain measures [23]. 
Segmentation methods have also been paired with predic-
tions of important markers for cardiovascular disease, such 
as volume of pericardial adipose tissue [24] and scar-tissue 
areas [25]. Fahmy et al. automatically quantified left ven-
tricular mass and scar volume in late gadolinium enhanced 
imaging [26], which showed strong agreement between 
the automated segmentations and the manual delinea-
tions. Farrag et al. [27] investigated the propagation of 
segmentation masks derived from cine imaging for the  
accurate segmentation of myocardial tissue in T1 mapping 
of a shMOLLI sequence. In contrast, the work of Hann et al. 
[28] segmented the myocardium directly in the shMOLLI 
data.

Segmentations have also been shown to provide  
valuable information for image reconstruction and motion 
correction tasks. Joint learning of motion estimation and 
segmentation for cine imaging was proposed by Qin et al. 
[29]. The results suggested that an efficient motion esti-
mation network can bypass the need for high-quality  
reconstructions to achieve accurate image segmentation, 
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3   Physics-guided deep learning-based image reconstruction for dynamic contrast-enhanced MRI. A three-slice myocardial perfusion in the right 
ventricle (RV) uptake, left ventricle (LV) uptake and late phase is shown for different reconstruction techniques. A split slice-GRAPPA (top row) 
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arrows. Image courtesy of Mehmet Akçakaya.
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indicating the superiority of high-dimensional data  
processing. Sun et al. [30] proposed a unified deep  
network architecture for joint image reconstruction and 
segmentation. The reconstruction and segmentation  
networks share network parts, acting as intrinsic regular-
izers for each other, while unshared network parts act 
 specifically to the task (reconstruction or segmentation). 
Their results suggest that training a joint network is bene- 
ficial for high-quality segmentation of undersampled 
k-space data. While most multi-task networks aimed for an 
intermediate reconstructed image, Schlemper et al. [31] 
bypassed this step and directly predicted segmentation 
maps from highly undersampled dynamic CMR images  
of the UK Biobank data. Their results indicate that clinical 
parameters can be computed within an error of 10% if at 
least 10 lines are acquired for each cardiac phase using 
Cartesian sampling.

As sufficient image quality is a crucial factor in any fur-
ther downstream task, Tarroni et al. devised an automated 
cardiac quality control [32]. The heart coverage, existence 
of inter-slice motion, and myocardial to blood pool contrast 
are automatically assessed. Their findings enable a repro-
ducible and objective setting for large-scale and automated 
data processing. 

Neural networks have also been proposed for quanti ta-
tive CMR imaging to allow for accelerated myocardial tissue 
characterization. Jeelani et al. estimated quantitative T1 
maps from a MOLLI sequence [33, 34]. The work of Fahmi 
et al. paired the quantification network with a segmenta-
tion to target the maps toward the myocardium [35]. 

For multi-parametric acquisitions in MR fingerprinting, 
AI solutions have been initially proposed for non-cardiac 
applications [36] in order to bypass dictionary simulation 
and pattern matching and thereby reduce computation 
time and memory requirements. In CMR fingerprinting,  
sequence timings depend on the subject’s cardiac rhythm. 

Hamilton et al. proposed an estimation of T1 and T2 maps 
directly from undersampled spiral images showcasing rapid 
and robust predictions [37], as depicted in Figure 4.

Myocardial tissue characterization has also been stud-
ied in the context of radiomics. In radiomics, the image 
data is converted into mineable high-dimensional data  
using a large number of handcrafted features targeted  
toward the image intensity, and structural and textural  
information. These features are then used to perform  
segmentation of myocardial tissue [38], differentiate  
between acute and chronic infarction [39], differentiate 
between causes of myocardial hypertrophy [40], discrimi-
nate between hypertensive heart disease and hypertrophic 
cardiomyopathy patients [41], and quantify myocardial  
inflammation [42].

Beyond purely imaging-focused approaches, AI meth-
ods have also been used to predict outcomes in patients 
with various cardiovascular diseases [43] and identify  
relationships between cardiac morphology and non- 
imaging information as provided by genetic variations [44].

Motion correction
Physiological motion is still one of the major extrinsic 
sources of image artifacts and requires appropriate han-
dling during acquisition or reconstruction. In the case  
of CMR, we are primarily dealing with respiratory and  
cardiac motion, which result in non-rigid deformations of 
the heart and its surrounding environment. Respiratory 
motion and cardiac motion are in most solutions regarded 
as periodic, but they do not necessarily have a fixed  
frequency throughout the scan. In other words, a subject 
might hold their breath, or a heartbeat might be skipped 
and should therefore be treated as cyclic rather than peri-
odic. Simplifications in modeling and correcting motion 
may be necessary to handle the motion problem and to 
build an appropriate AI solution.

Undersampled MRF images

Cardiac MRF reconstruction

Measured signal
(with noise & aliasing artifacts)

RR Interval Timings
(from ECG)

For every  
voxel location

time

T1

T2

RR(1)

998.3 ± 40.3 ms

40.3 ± 6.4 ms

RR(2) RR(3)

Fully connected 
Neural Network

T1/T2 Maps

[m
s]
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4   Deep learning-based magnetic resonance fingerprinting (MRF) for myocardial tissue mapping [37]. A cardiac MRF sequence collects data 
within an ECG-triggered window under breath-hold from which the temporal fingerprint (measured signal) can be extracted for every voxel 
location. Together with the heart-rate interval timings, a fully connected neural network estimates the T1 and T2 values at each voxel 
location. Image courtesy of Jesse Hamilton.
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AI-based image registration methods have been proposed 
to map motion states in motion-resolved images, output-
ting a motion field of the moving anatomies. Mappings can 
be expressed between a pair of images (e.g., end-systolic 
frame to end-diastolic frame), known as pairwise registra-
tion, or between a group of images (several diastolic 
frames) to a target image (end-systolic frame), known  
as groupwise registrations. Large non-rigid motion across 
multiple temporal frames can occur, and in the case of 2D 
imaging the existence of through-plane motion compli-
cates the motion estimation process. Moreover, estimated 
motion fields should be diffeomorphic, i.e., a forward  
motion (end-systolic to end-diastolic) can be easily inverted 
to a backward motion (end-diastolic to end-systolic). 

A fast and reliable motion estimation is therefore  
required that correlates these short- and long-term corre-
spondences. AI methods have been proposed to operate 
on the reconstructed motion-resolved images (i.e., in the 
image domain) for pairwise registrations [45–47] or group-
wise registrations [48]. Alternatively, registration could be 
carried out directly on the acquired raw k-space data [49]. 
Since it is often of interest to estimate motion from as little 
data as possible (providing high temporal motion resolu-
tion), motion estimation procedures have been challenged 
with data from accelerated acquisitions [49–51]. 

Instead of outputting a motion field, joint motion- 
compensated image reconstruction networks have been 
studied. Motion estimations are embedded with the recon-
struction process in order to exploit the high-dimensional 
data [52–54], as highlighted in Figure 5. Further combina-
tions with segmentation have been studied in [55], which 
introduced a joint framework for motion artifact detection, 
correction in k-space, and image segmentation. In this  

setting, the motion correction problem is reformulated  
as a reconstruction task. The motion artifact network  
detects motion-affected lines in k-space, which are then 
signaled to the reconstruction part for removal, yielding  
a motion-corrected image from which segmentations are 
derived. The results showed that joint processing was  
superior to sequential processing.

Adversarial training strategies as proposed in [56, 57] 
aim to correct for the motion in the image domain. These 
networks consist of two parts: a generator network which 
predicts motion-corrected images from simulated motion- 
corrupted ones, and a discriminator which tries to distin-
guish between the generated motion-corrected images 
(from generator) and real motion-corrected images.  
The goal is to fool the discriminator network to generate 
images that look like real motion-corrected images.  
Alternatively, motion embeddings can be learned with  
variational autoencoders that allow to distinguish be-
tween motion-affected and motion-corrected scans [58]. 

Current challenges, opportunities,  
and limitations
CMR imaging offers a great opportunity for deep learning 
due to the redundancy and the high dimensionality of the 
data. However, we also face challenges regarding acquisi-
tion time, SNR, the trade-off between spatial and temporal 
resolutions, and different types of motion, e.g., cardiac and 
respiratory motion, which makes the application of deep 
learning techniques more demanding. While deep learning 
approaches often outperform CS-based approaches in terms  
of pixel-wise quantitative scores, these approaches might 
tend to over-blur the temporal component. How ever, a 
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5   Motion-compensated image reconstruction for cardiac cine imaging. An image reconstruction is paired with a motion estimation network. The 
impact of sharing the available spatiotemporal information in a motion-corrected image reconstruction (bottom row) is shown in comparison 
to performing only a non-motion-informed image reconstruction (top row). For higher accelerations, sharing spatiotemporal data allows to 
increase sampling density and thereby improve image quality.
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high resolution of the temporal dynamics is crucial for  
diagnosis and to detect subtle pathologies.

When using deep learning techniques, it is challenging 
to evaluate the quality and robustness of reconstruction 
approaches, especially in the case of subtle pathologies. 
However, we might get trapped in overly optimistic results 
if we use simulated data and neglect the unprocessed raw 
k-space data [59]. In a different line of work, the robust-
ness of neural networks to small adversarial perturbations 
at the input was investigated [60]. Robustness of neural 
networks to changes in anatomy was studied in the con-
text of static 2D imaging in [61], showing that domain 
shift has a marginal impact on image reconstruction when 
using unrolled networks and moderate acceleration. This 
observation regarding domain shift is different to image 
analysis tasks, where a subtle change might lead to 
mis-segmentation, for instance.

Deep learning approaches were intensively and  
individually studied in the context of scan planning, accel-
erated acquisition and reconstruction, and image analysis. 
While we often focus only on one part of this full imaging 
pipeline, deep learning provides many more opportunities 
to improve the whole workflow of CMR image acquisition 
for analysis and diagnosis. Future investigations of deep 
learning approaches will go deeper in supporting the 
choice of exam based on actual physiological scan para-
meters such as heart rate, or on the patient information 
obtained during the scan. Deep learning techniques will 
also support further acceleration in scan time to enable  
real-time interventional cardiac MRI [62]. We also observe 
a trend towards embedding different elements of the im-
aging pipeline into a deep learning approach and training 
this network end-to-end as shown in multi-task networks, 
or exploiting the available data, e.g., via motion fields, 
which will form the future of learning-based CMR imaging.
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How did you first come into contact with MRI?
I had actually never heard of an MRI scanner until I joined 
Siemens. I had knowledge of nuclear physics for nuclear 
reactors, but during my on-the-job training in the MR appli-
cation team, I remember being very surprised about how 
clearly the human body could be visualized using nuclear 
magnetic resonance. In the world of fluid dynamics,  
laser Doppler velocimeters (LDV) and ultrasonic velocity 
profilers (UVP) were the main instruments used for flow 
visualization, so I was surprised to learn about the princi-
ples of blood flow imaging such as time-of-flight MRA and 
phase-contrast MRA. To me, an MRI machine looked like a 
giant measuring device for flow velocity. 

What do you find motivating about your job?
The ability to share with the world the results that Japa-
nese cardiovascular MRI researchers produce using the  
latest technology from Siemens Healthineers. Japanese  
radiologists have a strong preference for MR imaging of  
the highest quality, right down to the smallest detail. They 
also have a wealth of scanning knowledge and expertise. 
On the other hand, there aren’t many positions for MRI 
physicists in Japanese hospitals. 

To achieve good results, we need to combine a good re-
search skills with good operating and engineering skills. 
The collaboration manager at Siemens Healthineers fits 
into this critical mix as an MRI expert. The customer is 
 the medical expert. We work together to produce good  
research results. This type of teamwork is very rewarding.

Sometimes I encounter things I don't understand and 
it becomes hard to make a decision. At such times, our 
overseas colleagues help me. In fact, many engineers have 
helped me over the past 20 years. Their support has been 
invaluable whenever I’ve faced a challenging situation.

What are the biggest challenges in your job?
MRI research has a long history, but for most of that time, 
the neuro and body research fields have been the main-
stream. The history of research in the cardiovascular field  
is not so long. When I started cardiovascular MRI research 
in 1999, the late gadolinium enhancement (LGE) imaging 
method was just emerging, and the clinical usefulness of 
cardiovascular MRI was just beginning to be investigated. 
Recently, studies such as free-breathing cardiac imaging 
methods have begun, but I believe there is still room for 
further developing cardiovascular MRI as a routine exam-
ination in clinical settings in Japan.

Siemens Healthineers: Our brand name embodies the pioneering spirit and  
engineering expertise that is unique in the healthcare industry. The people working  
for Siemens Healthineers are totally committed to the company they work for, and  
are passionate about their technology. In this section we introduce you to colleagues  
from all over the world – people who put their hearts into what they do.
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My challenges are to promote the clinical use of cardiovas-
cular MRI more widely, and to advocate for cardiovascular 
MRI among young researchers, so they will enter this  
exciting field. 

What would you do if you could spend a month doing 
whatever you wanted?
If I could take a month-long vacation, I would like to get  
a small boat license and go fishing with my son. As you  
all know, Japan is surrounded by the sea. Ocean currents 
are abundant here. It’s perfect for fishing and then eating 
sashimi. And of course we can enjoy a hot spring after-
ward!

Get to know us

Chicago, USA
Kelvin Chow, Ph.D.

Erlangen, 
Germany

Michaela Schmidt 

Erlangen, 
Germany

Christian Geppert, Ph.D.

Erlangen, 
Germany

Peter Speier, Ph.D.

Erlangen, 
Germany

Carmel Hayes

Bordeaux, France

Solenn Toupin, Ph.D.

Find more portraits  
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On account of certain regional limitations of sales rights 
and service availability, we cannot guarantee that all  
products included in this brochure are available through 
the Siemens Healthineers sales organization worldwide. 
Availability and packaging may vary by country and  
is subject to change without prior notice. Some/All of  
the features and products described herein may not be 
available in the United States.

The information in this document contains general  
technical descriptions of specifications and options as  
well as standard and optional features which do not  
always have to be present in individual cases, and which 

may not be commercially available in all countries.  
Due to regulatory reasons their future availability  
cannot be guaranteed. Please contact your local  
Siemens organization for further details.

Siemens Healthineers reserves the right to modify the  
design, packaging, specifications, and options described 
herein without prior notice. Please contact your local  
Siemens Healthineers sales representative for the most  
current information.

Note: Any technical data contained in this document  
may vary within defined tolerances. Original images  
always lose a certain amount of detail when reproduced.
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