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Background
In clinical practice, quantitative antibody testing for 
assessing the need to vaccinate/boost is common, 
especially in cases such as hepatitis B vaccination,  
where the neutralizing surface antigen-antibody 
threshold associated with immunity is known.1 In 
population-based studies, SARS-CoV-2 antibody testing 
has been shown to identify a significant percentage of 
the population with an immune response to the virus  
but undiagnosed for COVID-19.2-6 Commercially available 
clinical laboratory serology testing suitable for clinical 
practice is not expensive and can often be high-
throughput, with fast turnaround and broad population 
access. While many serology assays that came to market 
initially were of low quality given the initial interest in 
facilitating an immediate, even if sub-optimal, testing 
capability during the outset of the pandemic, increased 
regulatory expectations have effectively removed low 
quality assays from authorized lists. Currently available 
assays with very high (≥99.5%) specificity, particularly 
important under conditions of low disease prevalence, 
will be essential to vaccination campaigns, both to 
identify vulnerable populations as well as assess for a 
successful response in large populations.7,8 

As learned during this pandemic for other types of 
SARS-CoV-2 testing, such as PCR, availability at a large 
and accessible scale is key to ensuring that the needs of 
the population can be met. While proof of antibody-
associated immunity in SARS-CoV-2 is emerging from the 
vaccine trials and other datasets, extensive data to date 
already support a role for neutralizing antibody in 
protecting from (or mitigating) infection.9-17

Studies from natural infections indicate significant 
diversity in the levels and duration of neutralizing 
antibody responses, with declining levels over time 
potentially leading to reinfection.17-26 Consequently, 
testing is essential to distinguish successful from 
suboptimal vaccine responses and detect antibody 
declines after natural infection.27-29 The factors 
influencing likelihood of a robust neutralizing antibody 
response are poorly defined but have been linked to 
immunocompetency, age, and disease severity.27,30,31 
Existing data indicates that detectable levels of  
circulating neutralizing antibody are necessary for 
protection, though the role of memory B-cells and/or 
T-cells is still under investigation.

Siemens Healthineers Position
Serology testing for SARS-CoV-2 will be beneficial and potentially even necessary in assessment of vaccine 
effectiveness, which will play a key role in promoting public health. Siemens Healthineers supports measuring 
SARS-CoV-2 IgG antibodies in relation to vaccine use for (1) establishing a threshold for protection or immunity,  
(2) confirming an initial neutralizing antibody response shortly after vaccination (approximately 3–4 weeks after 
each dose), and (3) tracking of antibody levels (at approximately 3, 6, and 9 months and annually) following 
vaccination. An automated and scalable serology assay used for patient care in the context of vaccination should 
include key technical features for effective use: measurement of spike receptor-binding domain (S1-RBD)-neutralizing 
IgG antibodies, very high (≥99.5%) specificity, and quantitative results.
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Considerations
Antibody-mediated immunity
Immune responses to pathogens are diverse and involve 
both adaptive and innate elements.32,33 Adaptive 
immunity is pathogen-specific and principally mediated 
by B- and T-cells. Humoral immunity is driven by B-cells 
that produce antibody (often “helped” by T-cells that 
secrete specific cytokines). With many pathogens, 
antibodies are the principal effector of protection, 
particularly if they can block (neutralize) viral entry.34 
Because antibody-mediated viral neutralization is often, 
but not always, a correlate for immunity, confirmed 
protection in vivo associated with specific antibodies/
levels must be established. A growing body of data 
supports the potential for neutralizing antibody to confer 
protection from SARS-CoV-2.9-17,35-37 This includes both in 
vitro demonstrations of antibody neutralization and in 
vivo evidence in a range of experimental animal models 
challenged with live virus. While conflicting data exists 
on the duration of neutralizing antibodies following 
SARS-CoV-2 infection, increasing datasets suggest 
persistence in excess of 3 months in the majority of 
infections, including those with mild or moderate 
disease.17,20,21,24,38-41 As vaccine-induced production of 
neutralizing antibodies proves effective, assessment  
of neutralizing antibody levels to identify/confirm a 
protective threshold will be vital in establishing broad 
population-based immunity.

Vaccine-related serology test applications
Vaccination-related testing for neutralizing antibody can 
be used at multiple timepoints. Ongoing clinical trials for 
recently authorized vaccines, and vaccines in 

development, are utilizing serology testing for 
neutralizing antibody titer as a surrogate of 
efficacy.15,16,27,37,42-57 These trials are assessing neutralizing 
antibody immunogenicity in response to vaccine 
administration over time, which will be necessary to 
inform antibody-mediated protection. A modeling study 
assessing vaccine prioritization strategies demonstrated 
there may be value in pairing serology testing with 
vaccination in areas with higher SARS-CoV-2 
seroprevalence.58 As current vaccines require a two-dose 
regimen to broadly stimulate levels of neutralizing 
antibody, serology testing would measure for an effective 
response approximately 3–4 weeks after each dose.37,59 
For logistical convenience, in many settings serology 
testing can be undertaken during the same visit as the 
second vaccine dose administration. Quantitative 
periodic antibody testing post-vaccination, after 
approximately 3, 6, and 9 months, would ensure a 
sustained antibody response at sufficient levels for virus 
neutralization (Figure 1). Initially, additional data on 
duration of antibody-mediated protection is needed 
across populations, and in the long-term testing may  
be focused on particular populations with known risk of 
insufficient immune response. The timing of appropriate 
serology testing would be optimized and refined as 
needed. A serology-defined threshold (from either 
natural infection or vaccination) remains a key need,  
and this periodic testing would offer additional data  
on antibody response patterns to determine optimal 
serology testing utilization. Longer-timeframe 
quantitative testing for waning levels of protective 
antibody, such as through annual testing, would inform 
the need to revaccinate/boost.

Vaccination Months after vaccination

3–4 weeks after vaccination*

• Confirms initial neutralizing
   antibody response
• Helps ensure antibody 
   response clears threshold 
   for immunity

3, 6, 9 months after vaccination

• Confirms persistence and 
   duration of immunity
• Provides means to 
   sero-bridge abridged trials 
   to additional populations

Annually after vaccination

• Assesses persistence and 
   duration of immunity
• Informs requirements for 
   future vaccinations

*For a 2-dose regimen, the proposed timing is after each dose.

Figure 1. Key timepoints for serology testing to assess initial antibody immune response and duration post-vaccination.
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Antibody targets and neutralization
Current commercially available SARS-CoV-2 antibody 
assays have diverse targets, including nucleocapsid (N) 
protein, whole spike (both S1 and S2 regions), S1, and 
S1-RBD.39-63 Robust evidence in vitro and from animal 
model studies supports a mechanism of viral 
neutralization by antibodies to the spike glycoprotein, 
primarily through inhibition of recognition/attachment  
to the ACE2 host cell receptor. While several epitope-
specific neutralizing spike antibodies have been 
identified (in both S1 and S2), most target the S1-RBD,  
as these antibodies can interfere with recognition and 
binding to ACE2.9-11,17,38 Since both whole-spike- and 
S1-targeted assays include the RBD region, they can 
indicate, but not specifically identify, the presence of 
RBD-associated neutralizing antibodies. S1-RBD-specific 
assays are likely to prove advantageous over S1 and 
whole spike, especially if using a quantitative assay, as 
neutralizing versus binding antibodies might be expected 
to be enriched and therefore a better correlate to 
immunity. While not all antibodies to the RBD are equally 
neutralizing, the RBD is identified as the immunodominant 
source. Depletion analysis indicates an estimated ~90% 
of known neutralizing antibodies target epitopes within 
the RBD.10,17,35 While current data on S1-RBD vaccines 
may preclude the need for changes to vaccine design, 
second-generation vaccines may use a broader set of 
antigenic targets.

Quantitative versus qualitative reporting
Current SARS-CoV-2 qualitative antibody assays have a 
defined cut-point based on presence/absence of immune 
response rather than a threshold value based on antibody 
level and neutralization of the virus. Therefore, they only 
provide a “yes” or “no” indication of a response to infection. 
Quantitation of neutralizing antibody supports 
identification of an immune threshold, above which 
individuals are likely to be protected and below which 
they are susceptible. A few IgG and total antibody 
quantitative assays for the spike protein (including the 
S1-RBD) are already commercially available.64-67 Antibodies 
to SARS-CoV-2 can decline quickly and at different rates 
for different epitopes,18,19,20,22,24 so quantitation would 
prove salient for rapid assessment of immunity or need  
to boost. Quantitative testing would be a valuable tool  
for establishing a protective threshold, as well as initial 
assessment of vaccination response and monitoring of 
antibody levels over time when a threshold is established.

Vaccines and efficacy in current clinical trials
In phase 3 vaccine trials, protection from disease, i.e., 
immunity, has been demonstrated relative to the placebo 
group despite a finite incidence of infection in the 
vaccinated subjects. A vaccine could achieve statistical 
significance for the primary endpoint for protection from 
disease despite significant incidence of disease in the 

vaccinated group.68 Even with high efficacy, a proportion 
of those inoculated would not have protection from 
disease. Assessment for seroconversion failure or 
declining levels in the vaccinated but susceptible 
population is a critical parameter with implications for 
patient care, population management, and public 
policy.5,69 Data from initial vaccine trials is limited to 
certain populations and exposure patterns. Additional 
data on antibody response and duration will be needed 
to help inform vaccine efficacy in larger, more-diverse 
populations to determine appropriate use in the context 
of variables such as vaccine design/manufacturer, 
ethnicity, level of viral load exposure, and individual 
immune system strength. All vaccines in use or 
development published on to date include or are based 
solely on the spike protein, with spike- or RBD-specific 
antibodies serving as a surrogate of efficacy along with 
elements of the cellular response. In this scenario, natural 
infection can be monitored by testing for antibody to the 
N protein. However, testing for quantitative S1-RBD 
antibodies would be the preferred method to assess levels 
relative to susceptibility following vaccination due to their 
correlation to neutralization and protection. Additional 
data on vaccine use and antibody response in already-
seropositive patients is needed to determine response 
patterns in a more-diverse antibody population.

Summary
To enable an effective vaccination strategy, Siemens  
Healthineers advocates for the use of automated SARS- 
CoV-2 serology testing to help confirm efficacy.

Serology assays should have the appropriate characteristics 
for assessment of vaccine response:
• Quantitative results
• S1-RBD-neutralizing IgG antibody detection
• Very high (≥99.5%) specificity

Serology testing can inform vaccination utilization  
and status of protection at multiple junctures:
• �Post-vaccination initial response after approximately  

3 to 4 weeks (after each dose) 
• �Duration of vaccination response after approximately  

3, 6, and 9 months and annually (need to boost)

Additionally, quantitative neutralizing-antibody testing 
could support determination of an antibody threshold for 
immunity/susceptibility to SARS-CoV-2 and provide critical 
data needed to understand vaccine-facilitated antibody 
response and duration in populations not included in initial 
vaccine trials. Serology is a cost-effective surrogate for 
vaccine efficacy and able to meet high-volume testing 
needs. Ensuring the effectiveness of vaccines will play a 
key role in promoting public health, including assessing 
sufficient and durable protection.
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