Some common canine hematologic infections
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Canine Babesiosis
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Large Babesia species found in Europe

Babesia canis Babesia vogeli
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Small Babesia species found in Europe

Babesia gibsoni Babesia microti (B vulpes)
ina1l.5 year 0|d Pit BU” terrier Solano-Gallego et al. Parasites & Vectors (2016) 9:336
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Babesia canis Dermacentor

reticulatus
B. vogeli Rhipicephalus

sanguineus
B. gibsoni and Haemaphysalis spp.,
B. gibsoni- like Dermacentor spp.
Babesia microti- Ixodes hexagonus?®
like/Babesia vulpes

Rhipicephalus sanguineus group, March 2021 Dermacentor reticulatus, March 2021
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Table 9: Currently recognised distribution of canine Babesia spp. in Europe

Babesia spp. in dogs Distribution

B. canis Endemic in northern Spain, Portugal, France, The Netherlands, ltaly, focally in central and eastern
Europe up to the Baltic region associated with the distribution of Dermacentor spp. At least one endemic
focus in the UK.

B. vogeli Southern Europe, associated with the distribution of Rhipicephalus sanguineus.

B. gibsoni or B. gibsoni-
like spp.

Sporadic and rare in Europe, imported from Asia. Associated with distribution of R sanguineus

B. microti-like (B. vulpes)

Northwest Spain and Portugal (in foxes found in Croatia, Italy, Germany).
Recently found in ticks from UK dogs. Associated with distribution of Ixodes

Babesiosis (symptoms)

Utrecht
University

Clinical Findings in Dogs with Babesiosis'®
SPECTRUM DURATION E
Nonspecific Signs Hyperacute Symptoms
Anorexia Hypothermia
Lethargy Shock
Weakness Coma
Pyrexia Disseminated intravascular
Weight loss coagulation
Atypical Signs Metabolic acidosis
Ascites Death
Edema Acute Symptoms
Constipation Hemolytic anemia
Diarrhea Icterus
Ulcerative stomatitis Splenomegaly
Hemorrhage Lymphadenopathy
Congested mucous Vomiting

membranes Chronic Symptoms
Polycythemia Intermittent pyrexia
Ocular and nasal discharge Partial anorexia
Respiratory distress Loss of body condition

Masticatory myositis
Temporomandibular
joint pain
Back pain
CNS signs
Seizures
Ataxia
Paresis

Lymphadenopathy




Babesiosis Diagnosis

Blood smear (peripheral capillary blood, buffy coat) ‘ o)
+ Clinical babesiosis: often positive 0%

+ Chronic infections/carrier dogs: low and often
intermittent parasitemia
Serology (IFT/ELISA)

» After two weeks: not suitable for acute babesiosis

 In endemic areas only proof of contact with parasite
PCR s 12

+ Sensitivity higher than blood smear =
« Also for identification subspecies “H!
D
-
. . >
Oz All methods not suitable for screening .

w2 Utrecht
University

Identification of parameters and formulation of a statistical
and machine learning model to identify Babesia canis
infections in dogs using available ADVIA hematology data

Tera Pijnacker
Erik Teske

Dept Clin Scie, Veterinary Faculty
Utrecht University




Rationale study

Especially in chronic babesiosis clinical signs are not
always very specific

In a non-endemic regio Babesiosis is not always on the
top of the differential list

A large number of samples are analyzed daily in a
(commercial) laboratory. Most hematology samples are
solely analyzed on a machine.

A warning system to identify cases with increased
chance of finding parasites on manual blood smear
analysis would offer advantages

[Results published in: Parasites and Vectors, 2022,
Jan 29,15(1)]

A% Utrecht
Z\ University

Formulating a conventional statistical model
to identify Babesia canis infections in dogs
using ADVIA hematology data

Erik Teske




Materials & Methods

« Model building dataset:

+ All dogs with confirmed parasitemia in period 2002-2013
(n=87)
» Control dogs (n=1144): all canine blood samples send to
hematology lab in period Nov 2010-Jan 2011
+ Validation dataset:

* 13 dogs with confirmed B. canis in period Jan 2017-June
2020

+ Control dogs (n=5649, with 5540 unique dogs): all blood
samples send to hematology lab period Jan 2017-Sept 2018

Materials & Methods

« All blood samples were analyzed on ADVIA-120 in
period 2002-2013 and on ADVIA-2120i in period 2017-
2020

* In both datasets 214 different parameters related to
erythrocytes, platelets and leukocytes were recorded

« Parameters were exported to Excel and analyzed in
SPSS 27.0 and MedCalc 20.0




Results |

Model Building dataset

After calculating means and 1SD and 2SD for each of the

214 different parameters related to erythrocytes,
reticulocytes, platelets and leukocytes, in the modelling

dataset, those parameters of which >30% of the values of
the babesia dogs were outside 1SD of the mean of control
dogs were identified (Table 1) =>

Table 1 Parameters of which >30% of the values of babesia patients were

outside 1SD of mean of control dogs were identified

TEST % <or> n TEST % <or> n
1SD 2SD 1SD 25D

[RBC(x10E12 cells/L)| 437 5.8 < 87 [IRE-M+H(%)| 39.7 0.0 < 63
HGB(m mol/L) 34,5 3.5 < 87 IMCV_rm_delta(fL) 413 32 < 63
JHCT(L/L)| 4.5 58 < 87 HDW _rm_delta(m mol/L) 36,5 79 > 63
[%LUC(%)] 60.9 333 = 97 |CH_rm_delta(fimol)| 413 12,7 < 63
MN_y peak([No Units)) 0.5 506 - 97 (;HDW rm_delta f?'no]) 48.4 129 > 63
o ndex[No i) XN EYI ES R oy, we T T To
pent low retics(%) 39,7 0.0 s 63 %highCH_r([No Units])[ 413 0.0 < 3
pent med reties%) 33,3 0.0 = 63 RBC 2-D_count(x10E12 cells/L)] 437 5.8 < 87
retics_cells_tresh([No Units]) 44.4 0.0 > 63 PLT(x10E09 cells/L) 98.9 0.0 < 87
med_retic_tresh([No Units]) 82,5 0,0 > 63 MPV(fL 89.7 59.8 > 87
high_retic_thresh([No Units] 100.0 0,0 > 63 [ IMPC(e/L)] 74.7 402 < 87
retic MCV/(fL) 349 0,0 < 63 PCDW(g/L) 4.4 12 > 37
retic HDW(m mol/L) 36,5 12,7 > 63 MPM(pg) 58.6 18.4 > 87
retic_H_mean(fimol 31.8 1.6 < 63 [PMDW(pg)| 89,7 63,2 > 87
% abnormal_cells([No Units]) 429 18.4 > 87 RBC_Ghosts(x10E12 cells/L) 30.3 18.2 < 65
pent_high px(%) 36.8 4.6 < 87 BaroxNRBCCount([No Units]) 31,0 0,0 > 87
Lymph_noise_valle; 32,2 11,5 > 87 endCurveMu([No Units]) 28.7 8.1 > 87




Results| Model Building dataset

» For these parameters ROC curves were drawn and

parameters with a high AUC were selected, cut-off values
were chosen, and sensitivity, specificity and LR+ were
calculated (Table 2) =>

Lo N 19
PLT_x10E09_cells L_ MPV_fL_
100
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Lo N 21
Table 2 Selected parameters based on ROC curves
1231 0.966 98.85 90.47 10.37
1231 0.938 95.40 84.70 6.24
1231 0.929 89.66 88.72 7.95
770 0.917 80.46 95.54 18.04
1231 0.708 100 58.42 2.41
1231 0.939 97.70 75.87 4.05
1231 0.869 81.61 97.50 32.64
1231 0.890 82.76 81.56 4.49
O o, 2
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Results| Model Building dataset

« Toincrease the diagnostic accuracy several combinations of
parameters were selected (Table 3) =>

Utrecht
% University 23

Table 3 Combinations of parameters to increase diagnostic
accuracy in modelling dataset.

98.9 90.5 10.37
96.6 93.0 13.80
94.3 94.3 16.54
89.7 97.7 39.00
93.1 94.8 17.90
88.5 98.1 46.58
87.4 98.6 62.43
Lo N 24

12



Results Il

Parameters identified in the modelling dataset as having
a high AUC (Table 2) were used in the validation set.
The known prevalence for Babesia canis in this set was

0.23%.

Using this prevalence, apart from the sensitivity and
specificity, positive predictive values (PV+) were calculated
for each of these parameters (Table 4) =>

Model evaluation dataset

Lo N 25
Table 4 Selected parameters evaluated in validation dataset with
prevalence of 0.23%

100% 89.4% 9.43 2.1%
84.6% 78.4% 3.92 0.9%
76.9% 33.6% 1.16 0.3%
100% 1.5% 1.02 0.2%
61.5% 58.1% 1.47 0.3%
92.3% 77.2% 4.05 0.9%
| 84.6% 93.9% 13.87 3.1%
61.5% 69.0% 1.98 0.5%
O o, 26
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Results Il Model evaluation dataset

« Parameters identified in the modelling dataset as having
a high AUC (Table 2) were used in the validation set.

« The known prevalence for Babesia canis in this set was
0.23%.

+ Using this prevalence, the sensitivity and specificity,
positive predictive values (PV+) were calculated for each
of these parameters (Table 4). The single parameter with
highest PV+ was %LUC>1.8 (PV+=3.1%).

« This was repeated for the combination of parameters
found to have the highest diagnostic accuracy in the
modelling dataset. (Table 5). Combining with a third
parameter did not significantly increased accuracy =>

27

Table 5 Selected combinations of parameters evaluated in
validation dataset with prevalence of 0.23%

100%  89.4%  9.43 2.1%

92.3%  913% 1061  2.4%

84.6%  920% 1058  2.4%

84.6%  97.7% 3678 7.7%

76.9%  93.6% 1202 2.7%

615%  93.8%  9.92 2.2%

100%  89.6%  9.62 2.8%

84.6%  925% 1128  2.5%
76.9%  97.9%  36.62  7.9% |
69.2%  98.0% 3460  7.4%

28
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Conclusion

+ The combination of PLT<102 and %LUC>1.8 had one
of the highest sensitivities and PV+ (7.7%). Combining
with a third parameter did not significantly increased
accuracy.

« All blood smears that were indicated false positive by
the combination PLT<102 and %LUC>1.8 were re-
evaluated microscopically and an additional 6 Babesia
canis and 7 Anaplasma phagocytophilum cases were
identified. Including these Babesia cases the PV+ would
increase to 12.0% in a population with a prevalence of
0.23%.

Utrecht
%’% University 29

w2 Utrecht
University

Formulating a machine learning model to
identify acute Babesia canis infections in dogs
using ADVIA hematology data

Tera Pijnacker (Dip ECVIM-CA)

Internal medicine, Utrecht University
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What is machine
learning

Data Science
Collection, preparation and

analysis of data

Leverages Al/ML, statistics

and domain knowledge to
make decisions

Machine Learning (ML)

Algorithms that use (big)
data to improve

zcx\\ne Lear, /7,,'>
automatically by supervised, @
unsupervised and
reinforcement learning

Artificial Intelligence (Al)

Technology for machines to
interpret, learn, and make
‘intelligent’ decisions
©

———————— Deep Learning
Subset of ML using deep
neural networks
Deep
Learning
Lo N 31
\ + What is machine
+ + + .
\ + 4+ learning
\ + *+ +
\ +
‘ . .
' * + Supervised Learning
e Tl Y fe) =y
-7 - g¥ig @ - computer learns what is the best
. " . on model f
|
{ o
Unsupervised Learning

algorithm groups cases without

guidance about possible target

groups, i.e. labels

Qux, e o 32
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Y Supervised learning

+ +
) s+ Ty fG) -y
\ + *+ +
\ +
\ + o ,
v + Classification
PPl P + Predict discrete classes:
- = A e.g. has patient babesiosis
E n u
[ | ol B
]
. .
Y [ ] [ ] 0.~ -
e~ o
o ) ® ® .,.’ - ®
[ ] PY .. . r.' L] .
. R 27T e e Regression
S _--" ° Predict continuous outcomes:
e % “e ° e.g. milk production based on
-0 © food, age, breed etc

33

How is machine learning used for medical
purposes

Diagnosis

« Image analysis (radiograph analysis, cytology, histology)
« Predicting disease from lab results, vital parameters, etc
« Immunophenotyping

+ Etc

34
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How is machine MACHINE LEARNING
learning used for

medical purposes v ’w';' w%w mm"“"““
\ b4

Digital image  Feature extraction Classification Output

" et B e e S e e S
4 DEEP LEARNING
)

REVIEW ARTICLE | b 7‘ | S
] Normal
Artificial intelligence in cytopathology: a review 1 Abnormal
of the literature and overview of commercial %& ~
landscape g e -
Michael S. Landau, MD*, Liron Pantanowitz, MD Digital dataset Convolutional Neural Network Output
Feature-based neural network (learning vector Distinguished benign from malignant thyroid Varlatzidou et al. 2011
quantization) that used metrics based on follicular cells with sensitivity of 91.5% and
nuclear size, shape, and texture. specificity of 92.4%.
Cytology Feature-based neural network (back propagation) Distinguished benign from urothelial carcinoma in Muralidaran et al. 2015
using 5 morphometric features with histologic all cases, and also distinguished almost all
and/or clinical follow-up. high-grade urothelial carcinoma from low-
% Utrecht grade urothelial carcinoma.
niversi y

How has ML been used in veterinary medicine

* Machine learning algorithm as a diagnostic tool for
hypoadrenocorticism in dogs (Reagan et al, 2020)

* Machine-learning based prediction of Cushing’s syndrome in dogs
attending UK primary-care veterinary practice (Schofield et al, 2021)

 Predicting early risk of chronic kidney disease in cats using routine
clinical laboratory tests and machine learning (Bradley et al, 2019)

« An artificial neural network-based model to predict chronic kidney
disease in aged cats (Biourge et al, 2020)

« Computerized assisted evaluation system for canine cardiomegaly via
key points detection with deep learning (Zhang et al, 2021)

+ Etc.

Utrecht
% University 36




Building a ML model to detect Babesia canis
parasitemia

Model Pipeline

Model training +
hyperparameter
tuning (10-fold

cross validation)

Training dataset Data preprocessing .

Output
Predictions

Validation dataset Trained model

Utrecht 38




Materials & Methods

» Model building (training) dataset:

+ All dogs with confirmed parasitemia period 2002-
2013 (n=87)
+ Control dogs (n=1144): all canine blood samples

send to hematology lab in period Nov 2010-Jan 2011
+ Validation dataset:

+ 13 dogs with confirmed B. canis in period 2017-June
2020

+ Control dogs (n=5649, with 5540 unique dogs): all
blood samples send to hematology lab period Jan
2017-Sept 2018

39

Materials & Methods

« All blood samples were analyzed on ADVIA 120 in
period 2002-2013 and on ADVIA 2120i in period 2017-
2020

* In both datasets 214 different parameters related to
erythrocytes, platelets and leukocytes were recorded

« Parameters were exported to Excel

40
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Materials & Methods

4 classification models (logistic regression, decision
tree, random forest, XGBoost)

Model training and hyperparameter tuning (HyperOpt)
using 10-fold cross validation (to prevent overfitting).

« Best model selected based on AUC
Best trained model applied to validation dataset

41

Decision Tree

Random Forest Tree methods

/\ /\ Decision Tree
- Single decision tree
/\ ]\ ]\ /\ - Trained on all samples
and all parameters

Random Forest
Multiple decision trees
Each trained on random
subset of samples and
parameters
Final classification by
majority vote

42
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Decision Tree

Random Forest

Tree methods

Decision Tree
Single decision tree
Trained on all samples
and all parameters

Random Forest
Multiple decision trees
Each trained on random
subset of samples and
parameters
Final classification by
majority vote

43

Decision Tree

Random Forest

Tree methods

Decision Tree
Single decision tree
Trained on all samples
and all parameters

Random Forest
Multiple decision trees
Each trained on random
subset of samples and
parameters
Final classification by
majority vote

44
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Boosting

L LS 09 o0
oel0cy , %09 o4 , 00 0 o

-, : 0’0 ¢ 090 o )
Building a model by using 0q0 L F'Ye @) ...

weak models in series. Firstly, Original Data Weighted Data Weighted Data
a model is built from the
training data. Then the
second model is built which

tries to correct the errors — &5
present in the first model. v/ :: : \/. :: : v/ :::
This procedure is continued o

and models are added until

either the complete training X 0000 X 0000 X o000
data set is predicted correctly :: : : : T ® : :: : T : : : : :

45

Results

Sensitivity ~ Specificity Sensitivity ~ Specificity

AUC (%) AUC (%)

(%) (%) (%) (%)
97.0 95.4 89.1 98.0 100 87.0
99.3 95.4 96.9 99.4 100 95.7

99.3 95.4 96.8 99.4 100 93.7

46




Results

ROC
ROC curves from the
random-forest classifier for

ﬁ the training (orange) and

g 061 validation (blue) sets. The

Z star represents the model

204 to whose performance is
referred in the text

oig] ~ Train (sensitivity of 95% on the
) C;JI:Z(;E;I 99.3% (98.6-99.7, 95% C.1.) training Set).
AUROC = 99.4% (98.8-99.8, 95% C.1.)
O'Oo.b 02 0.4 06 0.8 1.0

S Utrecht
%y University

False Positive Rate

47

samples = 87
value = [43.0,49.5]
class = Positive

Results

PLT(x10EOQ9 cells/L) <= 101.5
samples = 1231
value = [615.5, 615.5]
class = Negative

Decision tree

samples = 24
value =[12.4,7.1]
class = Negative

48

24



PLT(x10E09 cells/L)
MPV(fL)
%LUC(%)
PCT(%)
abs_eos(x10E09 cells/L)
abs_neuts(x10E09 cells/L)
RBC(x10E12 cells/L)
abs_lucs(x10E09 cells/L)
WBCB(x10E09 cells/L)
WBCP(x10EQ9 cells/L)
%EOQS(%)

HCT(L/L)

MCH(fmol)
abs_monos(x10E09 cells/L)
measHGB(m mol/L)
abs_lymphs(x10E09 cells/L)
%MONO(%)
H_deviation(fmol)
MCHC(m mol/L)

mico_ct

High

Feature value

~015

- - T T T Low
-0.10 -0.05 0.00 0.05 0.10

SHAP value (impact on model output)

SHAP plot
(random forest)

The SHAP value indicates
how much that feature
contributes to the
prediction of that data
point, where large
deviations from zero mean
a larger contribution and
positive values contribute
towards a positive
prediction of Babesia canis

49

Machine learning compared to conventional statistics

Valdation

AUC (%) (S;)?SitiVitv (So’/:()adﬁdty
93.7 89.7 97.7
97.0 95.4 89.1
99.3 95.4 B

AUC (%) (Sozf)‘SitiVitv (S;scificity
91.1 84.6 97.7
98.0 100 87.0
99.4 100 95.7

50




Comparing statistical method and machine
learning method

e Utrecht
University

Logic behind decision tree similar to conventional statistics
model (if / then).

Performance both methods similar.

Both methods identified the same important parameters
(PLT, MPV, %LUC), while the random forest used additional
parameters which were of lesser importance to the model
Random forest and XGBoost perform slightly better, but
more complex (black box).

52
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Conclusions

« Screening for Babesia canis parasitemia on readily
available CBC data from ADVIA made possible.

* Machine Learning offers a powerful complementary
method to conventional statistics.

« Algorithms can easily be introduced in laboratories.

+ Pos Likelihood Ratio of ~37.

53

Questions?

‘,l . .4» A 18 -
ome random forest...,
: 3. & ! :‘f'. ~

54
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(Absolute) Iron Deficiency

= Microcytic, hypochromic anaemia (low MCV and MCH/MCHC)
= Often low reticulocyte count

= Low serum Fe and bone marrow iron

= Total Iron Binding Capacity increased (not in dogs?)

= Decreased transferrin saturation

= Often due to chronic blood loss (Gl tract, urinary tract, massive
parasite infestation)

= Less common in cats than in dogs

28



Peripheral blood smear:
Microcytosis and
hypochromasia

Disadvantages classic parameters

" |nsensitive parameters

= Only abnormal in late Fe deficiency stage

= Respond to inflammatory diseases

= Require additional blood sampling or bone marrow biopsies
= Time consuming

= Hb content in reticulocytes better reflection?

29



ADVIA®(2)120
Hematology System

RBC Analysis

High angle detector
(5°- 13)

... Low angle detector
(2°-3%)

30



RBC Volume (fL)

RBC Volume (V)

Hgb Concentration (HC)

Hgb Concentration (g/dL)

Hgb Content (CH)

RETICULOCYTES ANALYSIS

Oxazine 750 RNA Stain

31



Flow

670nm

Laser o P

High angle detector
(5°-15°)

oxatne 70 | | R
RNA o

Stain
o

Reticulocyte Analysis

D Absorbance

Low angle detector
(2-3%)

Reticulocyte Parameters

Retic Scalter
wn
1)
15}
5
)
o
o
N
N
L
=)
<
<
B
o)
—

High Angle (5-15 degrees)

;
m
r

m

T
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Vet Clin Pathol 2005

Hematologic and biochemical abnormalities indicating
iron deficiency are associated with decreased

reticulocyte hemoglobin content (CHr) and reticulocyte
volume (rMCV) in dogs

Jennifer D. Steinberg, Christine S. Olver

= Dogs with low CHr significantly lower mean values
of HCT, MCV, serum Fe, and % sat values than did
control dogs.

= Dogs with low CHr or low rMCV values had a higher
frequency of microcytosis, anaemia, low serum Fe
concentration, and low % sat than did control dogs.

= | ow CHr was defined as below reference values

Veterinary Clinical Pathology IS5N 02756382 2015

ORIGINAL RESEARCH

Reticulocyte hemoglobin content does not differentiate true from
functional iron deficiency in dogs
Lauren B. Radakovich, Kelly S. Santangelo, Christine S. Olver

= Dogs with low CHr values often have evidence of
inflammation, but low CHr did not reliably predict Fe

deficiency.

= Fe deficiency due to:

* [nadequate intake or excessive loss (Absolute Fe deficiency)
= Functional Fe deficiency with anaemia of inflammation

= However, low CHr values were defined as all values
below reference range

33



Veterinary Clinical Pathology Issn 02756382 2015

ORIGINAL RESEARCH

The utility of reticulocyte indices in distinguishing iron deficiency
anemia from anemia of inflammatory disease, portosystemic
shunting, and breed-associated microcytosis in dogs

Deanna M. W. Schaefer, Tracy Stokol

icine and Diagnostic Sciences, Cornell University College of Veterir

* Reticulocyte indices were measured using the
ADVIA 2120.

* Reference intervals were determined prospectively
in 122 healthy dogs: 1.521-1.776 fmol

* Retrospectively compared between dogs with
FeDef (n = 11), Anaemia of Inflammatory Disease
(AID; n = 12), Porto-Systemic Shunt (PSS; n = 12),
and Breed Associated Microcytosis (BAM; n = 7).

250

200

150

100

50

30
Serum Fe (ug/dl) _ CHr i
. 25 - . .
. ; H 3
. . . 20 ! ! .
. ® l
= N A 15 5
. 10
]
. . .

.
v

FeDef AID PSS BAM FeDef AID* PSS* BAM*
3 0 0 0 2 0

Conclusion:
Important to set low enough cutoff level!
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CHr Research Project Utrecht

= Both in dogs and cats

= Reference values CHr

= Reproducibility

= Stability

= Determine optimal cut-off point
= Sensitivity/Specificity

Reference values in dogs

= In 53 healthy dogs with normal Ht

= One outliner excluded

= Normal distribution (Shapiro-Wilk test)
= Reference values: 1.43 -1.71 fmol

Histogram with Reference Interval

14 ] - rmal Fit
an=1.571, SD=0.071
12 4 959
: — : 1.43210 1.710)

10 4

. : : - 90%

g

2

g &/ : :

g

2
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Reference values in cats

= In 150 cats with Ht 0.30-0.56 (median 0.37),
Reticulocytes 0-1.6% (median 0.2%)

= Normal distribution (Shapiro-Wilk test)
0.88 —1.23 fmol

= Reference values:

40

35

Histogram with Reference Interval

—— Normal Fit

(Mean=1.055,

 Referent
(0.884 0 1.226)

, SD=0087)

ce Limits

)

Z &
Reproducibility CHr
Coefficient of variation:
6 cats 3 dogs
X (gem.) n CV (%) X (gem) n CV(%)
0.79 10 1.63 1.36 10 0.54
0.82 6 1.34 1.53 10 0.64
0.85 10 1.74 1.86 10 0.62
0.96 8 2.10
1.02 8 1.69
1.1 10 3.79
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Influence of storage time on CHr

=12 dogs: T, : mean CHr = 1.49 fmol

Tie A=-0.007 (0.47%)
Ty A=-0.022 (1.48%)
T4 A=-0.043 (2.89%)
Tie A=-0.084 (5.64%)
Te A=-0.093 (6.24%)
T,, A=-0.107 (7.18%)

P=0.698
P=0.158
P=0.019
P<0.001
P<0.001
P<0.001

Accuracy to predict Fe def in dogs

= 63 dogs with different diseases

= Ht, Ret, MCV, MCH, MCHC, CHr, Platelets, serum Fe, Total Iron

Binding Capacity

= 21/63 dogs classified as Fe deficiency based on patient’s file

= Use of ROC curve to determine optimal cut-off point:
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Cut-off point: 1.22 fmol

Sensitivity: 95.2% (95%Cl: 76.7-99.9)  Specificity: 90.5% (95%Cl: 77.4-97.3)
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CHr=1.1517 + 0.0095 Fe (R=0.58; P<0.0001)
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Accuracy to predict Fe def in cats

= 55 cats with different diseases

= Ht, Ret, MCV, MCH, MCHC, CHr, Platelets

= 16/55 cats classified as Fe deficiency (based on patient’s file
= Use of ROC curve to determine optimal cut-off point:
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Cut-off point: 0.88 fmol
Sensitivity: 100% (95%Cl: 79.2-100%) Specificity: 76.9% (95%Cl: 60.7-88.8%)

Conclusions

= Fast, easy and reliable method to detect Fe deficiency in dogs and cats

= |ts stability over time facilitates postage of blood samples to referral
laboratories for measurement within 48 hours

Reference Cut-off

Species range value Sensitivity Specificity

1.43-1.71| 1.22
Dog fmol fmol 95.2% 90.5%
0.88-1.23| 0.88
Cat fmol fmol 100% 76.9%




