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CHr in the diagnosis of iron deficiency 

Some common canine hematologic infections
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• Babesia spp
• Anaplasma spp
• Ehrlichia
• Mycoplasmata
• Dirofilaria
• Hepatozoon
• Leishmania
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Canine Babesiosis
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Babesia canis
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Large Babesia species found in Europe

Babesia vogeli

Babesia gibsoni
in a 1.5 year old Pit Bull terrier
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Small Babesia species found in Europe

Babesia microti (B vulpes)
Solano-Gallego et al. Parasites & Vectors (2016) 9:336 
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Ticks
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Associated with distribution of R sanguineus

Associated with distribution of Ixodes

Babesiosis (symptoms)
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Babesiosis Diagnosis
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• Blood smear (peripheral capillary blood, buffy coat)
• Clinical babesiosis: often positive
• Chronic infections/carrier dogs: low and often 

intermittent parasitemia
• Serology (IFT/ELISA)

• After two weeks: not suitable for acute babesiosis
• In endemic areas only proof of contact with parasite

• PCR
• Sensitivity higher than blood smear
• Also for identification subspecies

All methods not suitable for screening

Tera Pijnacker
Erik Teske

Dept Clin Scie, Veterinary Faculty
Utrecht University

Identification of parameters and formulation of a statistical 
and machine learning model to identify Babesia canis

infections in dogs using available ADVIA hematology data
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Rationale study
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• Especially in chronic babesiosis clinical signs are not 
always very specific

• In a non-endemic regio Babesiosis is not always on the 
top of the differential list

• A large number of samples are analyzed daily in a 
(commercial) laboratory. Most hematology samples are 
solely analyzed on a machine.

• A warning system to identify cases with increased 
chance of finding parasites on manual blood smear 
analysis would offer advantages

[Results published in: Parasites and Vectors, 2022, 
Jan 29;15(1)]

Erik Teske

Formulating a conventional statistical model
to identify Babesia canis infections in dogs 

using ADVIA hematology data
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Materials & Methods

• Model building dataset: 
• All dogs with confirmed parasitemia in period 2002-2013 

(n=87) 
• Control dogs (n=1144): all canine blood samples send to 

hematology lab in period Nov 2010-Jan 2011
• Validation dataset:

• 13 dogs with confirmed B. canis in period Jan 2017-June 
2020

• Control dogs (n=5649, with 5540 unique dogs): all blood 
samples send to hematology lab period Jan 2017-Sept 2018

15

Materials & Methods

• All blood samples were analyzed on ADVIA-120 in 
period 2002-2013 and on ADVIA-2120i in period 2017-
2020

• In both datasets 214 different parameters related to 
erythrocytes, platelets and leukocytes were recorded

• Parameters were exported to Excel and analyzed in        
SPSS 27.0 and MedCalc 20.0

16
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Results I Model Building dataset
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• After calculating means and 1SD and 2SD for each of the 
214 different parameters related to erythrocytes, 
reticulocytes, platelets and leukocytes, in the modelling 
dataset, those parameters of which >30% of the values of 
the babesia dogs were outside 1SD of the mean of control 
dogs were identified (Table 1)  =>

18

TEST % < or > n

1 SD 2 SD
|RBC(x10E12 cells/L)| 43,7 5,8 < 87
HGB(m mol/L) 34,5 3,5 < 87
|HCT(L/L)| 42,5 5,8 < 87
|%LUC(%)| 60,9 33,3 > 87
MN_y_peak([No Units]) 80,5 50,6 < 87
lob_Index([No Units]) 79,3 3,5 > 87
pcnt_low_retics(%) 39,7 0,0 > 63
pcnt_med_retics(%) 33,3 0,0 < 63
retics_cells_tresh([No Units]) 44,4 0,0 > 63
med_retic_tresh([No Units]) 82,5 0,0 > 63
high_retic_thresh([No Units] 100,0 0,0 > 63
retic_MCV(fL) 34,9 0,0 < 63
retic_HDW(m mol/L) 36,5 12,7 > 63
retic_H_mean(fmol 31,8 1,6 < 63
% abnormal_cells([No Units]) 42,9 18,4 > 87
pcnt_high_px(%) 36,8 4,6 < 87
Lymph_noise_valley 32,2 11,5 > 87

TEST % < or > n
1 SD 2 SD

|IRF-M+H(%)| 39,7 0,0 < 63
|MCV_rm_delta(fL)| 41,3 3,2 < 63
HDW_rm_delta(m mol/L) 36,5 7,9 > 63
|CH_rm_delta(fmol)| 41,3 12,7 < 63
CHDW_rm_delta(fmol) 48,4 12,9 > 63
|%macro_r([No Units])| 49,2 0,0 < 63
%lowCH_m([No Units]) 28,6 7,9 > 63
|%highCH_r([No Units])| 41,3 0,0 < 63
|RBC_2-D_count(x10E12 cells/L)| 43,7 5,8 < 87
PLT(x10E09 cells/L) 98,9 0,0 < 87
MPV(fL 89,7 59,8 > 87
|MPC(g/L)| 74,7 40,2 < 87
PCDW(g/L) 41,4 1,2 > 87
MPM(pg) 58,6 18,4 > 87
|PMDW(pg)| 89,7 63,2 > 87
RBC_Ghosts(x10E12 cells/L) 30,3 18,2 < 65
BaroxNRBCCount([No Units]) 31,0 0,0 > 87
endCurveMu([No Units]) 28,7 8,1 > 87

Table 1 Parameters of which >30% of the values of babesia patients were
outside 1SD of mean of control dogs were identified 
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Results I Model Building dataset
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• After calculating means and 1SD and 2SD for each of the 
214 different parameters related to erythrocytes, 
reticulocytes, platelets and leukocytes, in the modelling 
dataset, those parameters of which >30% of the values 
were outside 1SD were identified (Table 1). 

• For these parameters ROC curves were drawn and 
parameters with a high AUC were selected, cut-off values 
were chosen, and sensitivity, specificity and LR+ were 
calculated (Table 2) =>
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ROC curves for selecting cut-off point
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ROC curves for selecting cut-off point
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N= AUC Sensitivity (%) Specificity (%) LR+

PLT (≤101 x10E09 cells/L) 1231 0.966 98.85 90.47 10.37

MPV (>14 fl) 1231 0.938 95.40 84.70 6.24

(>2.69) %Luc (>1.8) 1231 0.929 89.66 88.72 7.95

MN-y-peak (≤10.5) 770 0.917 80.46 95.54 18.04

High_retic_tresh (>70) 1231 0.708 100 58.42 2.41

PMDW (>1.09 pg) 1231 0.939 97.70 75.87 4.05

Lob_Index (>2.69) 1231 0.869 81.61 97.50 32.64

MPC (≤ 200 g/l) 1231 0.890 82.76 81.56 4.49

Table 2 Selected parameters based on ROC curves
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Results I Model Building dataset
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• After calculating means and 1SD and 2SD for each of the 
214 different parameters related to erythrocytes, 
reticulocytes, platelets and leukocytes, in the modelling 
dataset, those parameters of which >30% of the values 
were outside 1SD were identified (Table 1). 

• For these parameters ROC curves were drawn and 
parameters with a high AUC were selected and sensitivity, 
specificity and LR+ were calculated (Table 2). 

• To increase the diagnostic accuracy several combinations of 
parameters were selected (Table 3) =>

24

Sensitivity Specificity LR+

PLT (≤101 x10E09 cells/L) 98.9 90.5 10.37

PLT< 102 and PMDW >1.09 96.6 93.0 13.80

PLT<102 and MPV>14 94.3 94.3 16.54

PLT<102 and %Luc >1.8 89.7 97.7 39.00

PLT<102 and PMDW>1.09 and MPV>14 93.1 94.8 17.90

PLT<102 and PMDW>1.09 and %Luc>1.8 88.5 98.1 46.58

PLT<102 and MPV>14 and %Luc>1.8 87.4 98.6 62.43

Table 3   Combinations of parameters to increase diagnostic 
accuracy in modelling dataset.
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Results II Model evaluation dataset
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• Parameters identified in the modelling dataset as having 
a high AUC (Table 2) were used in the validation set. 

• The known prevalence for Babesia canis in this set was 
0.23%. 

• Using this prevalence, apart from the sensitivity and 
specificity, positive predictive values (PV+) were calculated 
for each of these parameters (Table 4) =>

26

N=5663
Sensitivity 
(%)

Specificity 
(%) LR+ PV+

PLT (≤101 x10E09 
cells/L) 100% 89.4% 9.43 2.1%

MPV (>14 fl) 84.6% 78.4% 3.92 0.9%

Lob_Index (>2.69) 76.9% 33.6% 1.16 0.3%

MN-y-peak (≤10.5) 100% 1.5% 1.02 0.2%

High_retic_tresh (>70) 61.5% 58.1% 1.47 0.3%

PMDW (>1.09 pg) 92.3% 77.2% 4.05 0.9%

%Luc (>1.8) 84.6% 93.9% 13.87 3.1%

MPC (≤ 200 g/l) 61.5% 69.0% 1.98 0.5%

Table 4 Selected parameters evaluated in validation dataset with 
prevalence of 0.23%  
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Results II Model evaluation dataset
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• Parameters identified in the modelling dataset as having 
a high AUC (Table 2) were used in the validation set. 

• The known prevalence for Babesia canis in this set was 
0.23%. 

• Using this prevalence, the sensitivity and specificity, 
positive predictive values (PV+) were calculated for each 
of these parameters (Table 4). The single parameter with 
highest PV+ was %LUC>1.8 (PV+=3.1%). 

• This was repeated for the combination of parameters 
found to have the highest diagnostic accuracy in the 
modelling dataset. (Table 5). Combining with a third 
parameter did not significantly increased accuracy =>

28

N=5663 Sensitivity Specificity LR+ PV+

PLT (≤101 x10E09 cells/L) 100% 89.4% 9.43 2.1%

PLT< 102 and PMDW >1.09 92.3% 91.3% 10.61 2.4%

PLT<102 and MPV>14 84.6% 92.0% 10.58 2.4%

PLT<102 and %Luc >1.8 84.6% 97.7 % 36.78 7.7%

PLT<102 and Lob_Index >2.69 76.9% 93.6% 12.02 2.7%

PLT<102 and MPC (≤ 200 g/l) 61.5% 93.8% 9.92 2.2%

PLT<102 and MN_y_Peak (≤10.5) 100% 89.6% 9.62 2.8%

PLT< 102 and PMDW >1.09 and MPV>14 84.6% 92.5% 11.28 2.5%

PLT< 102 and PMDW >1.09 and %Luc >1.8 76.9% 97.9% 36.62 7.9%

PLT<102 and %Luc >1.8 and MPV>14 69.2% 98.0% 34.60 7.4%

Table 5 Selected combinations of parameters evaluated in 
validation dataset with prevalence of 0.23% 
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Conclusion
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• The combination of PLT<102 and %LUC>1.8 had one 
of the highest sensitivities and PV+ (7.7%). Combining 
with a third parameter did not significantly increased 
accuracy.

• All blood smears that were indicated false positive by 
the combination PLT<102 and %LUC>1.8 were re-
evaluated microscopically and an additional 6 Babesia 
canis and 7 Anaplasma phagocytophilum cases were 
identified. Including these Babesia cases the PV+ would 
increase to 12.0% in a population with a prevalence of 
0.23%.

Tera Pijnacker (Dip ECVIM-CA)

Internal medicine, Utrecht University

Formulating a machine learning model to 
identify acute Babesia canis infections in dogs 

using ADVIA hematology data
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What is machine 
learning

Deep 
Learning

Data Science
 Collection, preparation and 

analysis of data
 Leverages AI/ML, statistics

and domain knowledge to
make decisions

Artificial Intelligence (AI)
 Technology for machines to 

interpret, learn, and make 
‘intelligent’ decisions

Machine Learning (ML)
 Algorithms that use (big) 

data to improve 
automatically by supervised, 
unsupervised and 
reinforcement learning

Deep Learning
 Subset of ML using deep 

neural networks

31

What is machine 
learning 

Supervised Learning
𝑓 𝑥 → 𝑦

computer learns what is the best 
model 𝑓

Unsupervised Learning
algorithm groups cases without 
guidance about possible target 
groups, i.e. labels

32
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Supervised learning
𝑓 𝑥 → 𝑦

Classification
Predict discrete classes:
e.g. has patient babesiosis

Regression
Predict continuous outcomes:
e.g. milk production based on 
food, age, breed etc

33

How is machine learning used for medical 
purposes

Diagnosis
• Image analysis (radiograph analysis, cytology, histology)
• Predicting disease from lab results, vital parameters, etc
• Immunophenotyping
• Etc.

34
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How is machine 
learning used for 
medical purposes

Cytology

35

How has ML been used in veterinary medicine

• Machine learning algorithm as a diagnostic tool for 
hypoadrenocorticism in dogs (Reagan et al, 2020)

• Machine-learning based prediction of Cushing’s syndrome in dogs 
attending UK primary-care veterinary practice (Schofield et al, 2021)

• Predicting early risk of chronic kidney disease in cats using routine 
clinical laboratory tests and machine learning (Bradley et al, 2019)

• An artificial neural network‐based model to predict chronic kidney 
disease in aged cats (Biourge et al, 2020)

• Computerized assisted evaluation system for canine cardiomegaly via 
key points detection with deep learning (Zhang et al, 2021)

• Etc..
36
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Study

Model Pipeline

Building a ML model to detect Babesia canis
parasitemia

Training dataset Data preprocessing

Model training + 
hyperparameter 
tuning (10-fold 

cross validation)

Trained modelValidation dataset Output
Predictions

38
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Materials & Methods

• Model building (training) dataset: 
• All dogs with confirmed parasitemia period 2002-

2013 (n=87) 
• Control dogs (n=1144): all canine blood samples 

send to hematology lab in period Nov 2010-Jan 2011
• Validation dataset:

• 13 dogs with confirmed B. canis in period 2017-June 
2020

• Control dogs (n=5649, with 5540 unique dogs): all 
blood samples send to hematology lab period Jan 
2017-Sept 2018

Identical to 
conventional statistics

39

Materials & Methods

• All blood samples were analyzed on ADVIA 120 in 
period 2002-2013 and on ADVIA 2120i in period 2017-
2020

• In both datasets 214 different parameters related to 
erythrocytes, platelets and leukocytes were recorded

• Parameters were exported to Excel

40

Identical to 
conventional statistics
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Materials & Methods

• 4 classification models (logistic regression, decision 
tree, random forest, XGBoost)

• Model training and hyperparameter tuning (HyperOpt) 
using 10-fold cross validation (to prevent overfitting).
• Best model selected based on AUC

• Best trained model applied to validation dataset

41

Tree methods

Decision Tree
• Single decision tree
• Trained on all samples 

and all parameters

Random Forest
• Multiple decision trees
• Each trained on random 

subset of samples and 
parameters

• Final classification by 
majority vote

Decision Tree Random Forest

42
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Tree methods

Decision Tree
• Single decision tree
• Trained on all samples 

and all parameters

Random Forest
• Multiple decision trees
• Each trained on random 

subset of samples and 
parameters

• Final classification by 
majority vote

Decision Tree Random Forest
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Tree methods

Decision Tree
• Single decision tree
• Trained on all samples 

and all parameters

Random Forest
• Multiple decision trees
• Each trained on random 

subset of samples and 
parameters

• Final classification by 
majority vote

Decision Tree Random Forest

44
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Boosting

Building a model by using 
weak models in series. Firstly, 
a model is built from the 
training data. Then the 
second model is built which 
tries to correct the errors 
present in the first model. 
This procedure is continued
and models are added until 
either the complete training 
data set is predicted correctly 
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Results

Model Train Validation

AUC (%) Sensitivity 
(%)

Specificity 
(%) AUC (%) Sensitivity 

(%)
Specificity 
(%)

Decision Tree 97.0 95.4 89.1 98.0 100 87.0

Random Forest 99.3 95.4 96.9 99.4 100 95.7

XGBoost 99.3 95.4 96.8 99.4 100 93.7

46
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Results

ROC curves from the 
random-forest classifier for 
the training (orange) and 
validation (blue) sets. The 
star represents the model 
to whose performance is 
referred in the text 
(sensitivity of 95% on the 
training set). 

47

Results

Decision tree

48
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SHAP plot 
(random forest)

The SHAP value indicates 
how much that feature 
contributes to the 
prediction of that data 
point, where large 
deviations from zero mean 
a larger contribution and 
positive values contribute 
towards a positive 
prediction of Babesia canis
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Machine learning compared to conventional statistics

Model Train Validation

AUC (%) Sensitivity 
(%)

Specificity 
(%) AUC (%) Sensitivity 

(%)
Specificity 
(%)

Conventional statistics 93.7 89.7 97.7 91.1 84.6 97.7

Decision Tree 97.0 95.4 89.1 98.0 100 87.0

Random Forest 99.3 95.4 96.9 99.4 100 95.7

50
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Overall conclusions

Comparing statistical method and machine 
learning method

52

• Logic behind decision tree similar to conventional statistics 
model (if / then).

• Performance both methods similar.
• Both methods identified the same important parameters 

(PLT, MPV, %LUC), while the random forest used additional 
parameters which were of lesser importance to the model

• Random forest and XGBoost perform slightly better, but 
more complex (black box).
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Conclusions

53

• Screening for Babesia canis parasitemia on readily 
available CBC data from ADVIA made possible. 

• Machine Learning offers a powerful complementary 
method to conventional statistics.

• Algorithms can easily be introduced in laboratories. 
• Pos Likelihood Ratio of 37.

Questions?

54

some random forest…
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Use of reticulocyte hemoglobin content (CHr) for the 
diagnosis of 

Fe deficiency in dogs and cats

(Absolute) Iron Deficiency

 Microcytic, hypochromic anaemia (low MCV and MCH/MCHC)
 Often low reticulocyte count
 Low serum Fe and bone marrow iron
 Total Iron Binding Capacity increased (not in dogs?)
 Decreased transferrin saturation
 Often due to chronic blood loss (GI tract, urinary tract, massive

parasite infestation)
 Less common in cats than in dogs



29

Peripheral blood smear:
Microcytosis and
hypochromasia

Disadvantages classic parameters

 Insensitive parameters
 Only abnormal in late Fe deficiency stage
 Respond to inflammatory diseases
 Require additional blood sampling or bone marrow biopsies
 Time consuming

 Hb content in reticulocytes better reflection?
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ADVIA®(2)120 
Hematology System

RBC Analysis

High angle detector
(5o - 15o)

Low angle detector 
(2o-3o)

670nm
Laser
Diode

(density)

(volume)
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Reticulocyte Analysis

Absorbance
RNA Content

High angle detector
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Vet Clin Pathol 2005

 Dogs with low CHr significantly lower mean values 
of HCT, MCV, serum Fe, and % sat values than did 
control dogs. 

 Dogs with low CHr or low rMCV values had a higher 
frequency of microcytosis, anaemia, low serum Fe 
concentration, and low % sat than did control dogs.

 Low CHr was defined as below reference values

 Dogs with low CHr values often have evidence of 
inflammation, but low CHr did not reliably predict  Fe 
deficiency.

 Fe deficiency due to:
 Inadequate intake or excessive loss (Absolute Fe deficiency)
 Functional Fe deficiency with anaemia of inflammation

 However, low CHr values were defined as all values 
below reference range

2015
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• Reticulocyte indices were measured using the 
ADVIA 2120. 

• Reference intervals were determined prospectively 
in 122 healthy dogs: 1.521-1.776 fmol

• Retrospectively compared between dogs with 
FeDef (n = 11), Anaemia of Inflammatory Disease 
(AID; n = 12), Porto-Systemic Shunt (PSS; n = 12), 
and Breed Associated Microcytosis (BAM; n = 7).

2015

Conclusion:
Important to set low enough cutoff level!
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CHr Research Project Utrecht

 Both in dogs and cats
 Reference values CHr
 Reproducibility
 Stability
 Determine optimal cut-off point
 Sensitivity/Specificity

Reference values in dogs

 In 53 healthy dogs with normal Ht
 One outliner excluded
 Normal distribution (Shapiro-Wilk test)
 Reference values: 1.43 - 1.71 fmol

Histogram with Reference Interval

0

2

4

6

8

10

12

14

1,35 1,45 1,55 1,65 1,75

CHr

F
re

q
u

e
n
c
y

Normal Fit
(Mean=1.571, SD=0.071)

95% Reference Limits
(1.432 to 1.710)

90% CI



36

Reference values in cats

 In 150 cats with Ht 0.30-0.56 (median 0.37), 
Reticulocytes 0-1.6% (median 0.2%)

 Normal distribution (Shapiro-Wilk test)
 Reference values: 0.88 – 1.23 fmol

Histogram with Reference Interval
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Reproducibility CHr

Coefficient of variation:

6 cats 3 dogs

Ẋ (gem.) n CV (%) Ẋ (gem) n CV(%)

0.79 10 1.63 1.36 10 0.54
0.82 6 1.34 1.53 10 0.64
0.85 10 1.74 1.86 10 0.62
0.96 8 2.10
1.02 8 1.69
1.11 10 3.79
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Influence of storage time on CHr

 12 dogs: T0 : mean CHr = 1.49 fmol

T16 Δ = -0.007 (0.47%) P=0.698
T24 Δ = -0.022 (1.48%) P=0.158
T40 Δ = -0.043      (2.89%) P=0.019
T48 Δ = -0.084      (5.64%) P<0.001
T64 Δ = -0.093      (6.24%) P<0.001
T72 Δ = -0.107      (7.18%) P<0.001

Accuracy to predict Fe def in dogs

 63 dogs with different diseases
 Ht, Ret, MCV, MCH, MCHC, CHr, Platelets, serum Fe, Total Iron 

Binding Capacity
 21/63 dogs classified as Fe deficiency based on patient’s file
 Use of ROC curve to determine optimal cut-off point:
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Cut-off point: 1.22 fmol

Sensitivity:  95.2%  (95%CI: 76.7-99.9) Specificity: 90.5% (95%CI: 77.4-97.3)
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CHr = 1.1517  +  0.0095 Fe  (R=0.58; P<0.0001)
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Accuracy to predict Fe def in cats

 55 cats with different diseases
 Ht, Ret, MCV, MCH, MCHC, CHr, Platelets
 16/55 cats classified as Fe deficiency (based on patient’s file
 Use of ROC curve to determine optimal cut-off point:
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AUC = 0,901
P < 0,001

Cut-off point: 0.88 fmol

Sensitivity:  100% (95%CI: 79.2-100%) Specificity: 76.9% (95%CI: 60.7-88.8%)

Conclusions

 Fast, easy and reliable method to detect Fe deficiency in dogs and cats
 Its stability over time facilitates postage of blood samples to referral 

laboratories for measurement within 48 hours


