

A turning point in medicine: the invention of PET/CT

A quarter of a century ago, the world's first PET/CT scanner was developed. Although initially met with uncertainty, the medical community vigorously embraced the modality as an indispensable diagnostic imaging tool and one that can provide life-saving information for countless patients, even for one of the scanner's inventors.

By Tanja Kellner-Reinhold

Biograph is the first commercial PET/CT system installed at the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA. This system is revolutionary in that it combines PET and CT in a single diagnostic system. TIME magazine hails the PET/CT as "Medical Invention of the Year."1

How it all began

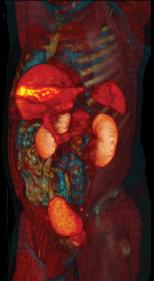
Time flies. Looking back, David Townsend, PhD, can hardly believe it has been twenty-five years since he and his team, based at the University of Pittsburgh, developed the device in collaboration with Ronald Nutt, PhD, CEO of CTI PET Systems, in Knoxville, Tennessee, USA. Since then, numerous innovations have propelled PET/CT to even higher and wider applications.

The story of PET/CT begins in the early 1970s in Geneva, Switzerland, almost 30 years before the first PET/CT scanner was developed. Back then, Townsend joined the European Organization for Nuclear Research (CERN), the European particle physics laboratory. At the time, PET was far from being a clinical tool—it was a research project with uncertain applications. Townsend started looking at potential detector applications for PET in 1975 along with Alan Jeavons, PhD.

Four years later, Townsend moved to University of Geneva Hospital to focus entirely on PET scanner development. In 1988, while working at University of Geneva Hospital, Townsend collaborated with CTI PET Systems

and Terry Jones, DSc, from Hammersmith Hospital, London, UK, to design and build a cost-effective, rotating PET scanner based on the BGO (bismuth germanium oxide) block detectors developed by CTI PET Systems. Townsend and Jones's rotating prototype scanner imaged patients at the University of Geneva Hospital and was later commercialized by CTI PET Systems as the Advanced Rotating Scanner (ART) that represented a costeffective PET scanner.

The birth of PET/CT


How did the idea of combining PET and CT come about? As with many groundbreaking innovations, it started with a simple questionand a bit of chance.

According to Townsend, an oncology surgeon at the University of Geneva Hospital walked by the PET scanner one day and wondered if it would be possible to add CT to the scanner design. His reasoning was practical: PET, at the time, was mostly confined to research centers, while every physician was familiar with CT. Townsend considered that idea. "So, I called Nutt at CTI and asked him, 'How about adding CT to PET?"

Townsend recalls. "For us, as scientists and engineers, it made sense. You're combining complementary information—the high-resolution anatomical detail of CT with the functional imaging of PET—and offering physicians both in a single device. While some degree of alignment of two separate CT and PET scans could be achieved using software, this approach was really only effective and reliable for brain imaging."

Fast forward to 1995 at the University of Pittsburgh. Townsend, along with physicist Thomas Beyer, PhD, MBA, and bioengineer Paul Kinahan, PhD, teamed up with Nutt to turn their concept into reality, funded by the National Cancer Institute (NCI). In close partnership, CTI contributed the PET technology, while Siemens provided the CT components. The team was also backed by the Department of Radiology at the University of Pittsburgh, where Townsend worked. The prototype PET/CT was built at the CTI factory in Knoxville and then moved to the PET facility at the University of Pittsburgh to start clinical scanning. Within three years, they had developed a prototype and began acquiring the first-ever clinical PET/CT images of patients.

Biograph mCT is announced as the world's first molecular computed tomography system and represents the evolution of integration in imaging. Biograph mCT is a combination of a state-of-the-art CT scanner with a high-performance PET system.

Data courtesy of Morgan Town West Virginia University Hospital, USA.

A modality looking for a home

At the 1998 Society of Nuclear Medicine (SNM) annual meeting in Toronto, Canada, Townsend shared the first clinical PET/CT images with the world. Townsend looks back, "It was a very exciting time to be to be involved in nuclear medicine." CTI and Siemens did not begin looking at the commercialization of PET/CT until about 1999, after enough clinical image data was acquired to convince physicians that it was a useful clinical concept.

While surgeons and oncologists were generally more receptive to the idea, the wider medical community's initial reaction to the new PET/CT scanner was, at best, uncertain. Why? Because it was hybrid technology that did not quite fit. Was it nuclear medicine? Was it radiology? No one knew exactly where it belonged. And would it require two technologists to operate it? Two physicians to read the scans? Many questions were asked.

The co-inventors, Townsend and Nutt, and members of the team

remained involved in PET/CT's development. In November 2000, the new scanner was unveiled to the world at the Radiological Society of North America's (RSNA) annual meeting in Chicago, Illinois, USA. In December of the same year, the PET/CT concept and prototype design was honored by *TIME* magazine as "Medical Invention of the Year." By mid-2001, the first commercially available Siemens Biograph PET/CT system was installed at the University of Pittsburgh.

"How about adding CT to PET?'...For us, as scientists and engineers, it made sense. You're combining complementary information—the high-resolution anatomical detail of CT with the functional imaging of PET—and offering physicians both in a single device."

David Townsend, PhD

Biograph mCT Flow is the first PET/CT system to move the patient through the gantry while continuously acquiring PET data.

Data courtesy of the University of Tennessee Medical Center, USA.

2015

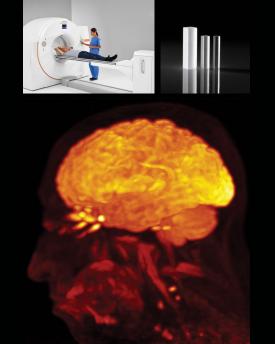
Biograph Horizon offers highresolution imaging, advanced PET and CT technologies, and Al-powered workflows. Its compact design and simplified operations enable more healthcare providers to offer a higher standard of care to more patients.

Data courtesy of University Hospital Halle, Germany.

Pushing PET/CT forward with ground-breaking innovation

Since PET/CT's unveiling at RSNA, the modality's capabilities continue to expand. Maurizio Conti, PhD, joined the Siemens molecular imaging team in 2000. Today, he serves as director of PET Physics and Reconstruction at Siemens Healthineers in Knoxville. When asked about the biggest technological developments in PET/CT over the past 25 years, he quickly points to two key milestones: replacing BGO detector blocks with lutetium oxyorthosilicate (LSO)

scintillators, which enabled time-of-flight (TOF) imaging, and the later introduction of silicon photomultipliers (SiPMs), which dramatically improved time resolution. These two breakthroughs significantly elevated image quality and greatly accelerated the scanning time, which in turn helped increase patient comfort.


Conti also speaks with particular pride about two projects: the first TOF PET/CT scanner from Siemens Healthineers, Biograph mCT, which was "a revolution in those years—a truly outstanding machine," he says and Biograph Vision Quadra total-body PET/CT. "It was an unusually fast project. Can you believe that it was done in about 1.5 years?"

In the last 25 years, software development has also played a critical role. Advances in reconstruction and data correction have greatly improved image quality, especially for how attenuation correction and image noise are handled in obese patients. TOF reconstruction now helps compensate

"Using different tracers, and more specific tracers, we can understand not only what a disease is, but if it's aggressive or not. And that correlates with the organs and the anatomy, which only PET/CT can do."

Maurizio Conti. PhD. Siemens Healthineers

Biograph Vision PET/CT is launched with an innovative design that reduces the size of the detector's crystal elements from 4 x 4 mm to 3.2 x 3.2 mm and generates 214-picosecond true TOF performance that leverages the full potential of SiPM technology.

Data courtesy of University Medical Center Groningen, The Netherlands.

for patient size and even motion—from breathing to heartbeats.

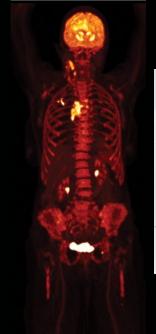
Reflecting on the progress over the past 25 years, Townsend says "Nowadays, you have very powerful instruments compared to what we had in 2000. And they provide superb, unbelievable imaging capabilities in times we didn't even dream of back in those days. The development of totalbody imaging with large field-of-view systems is now a reality. We used to work with 15-cm axial extent, and now you have a system like Biograph Vision Quadra, which has 106-cm axial field of view (aFOV). You can look at dynamics between different organs, which we could never do, and that's been a tremendous step forward. Because you know we would image either the brain or the heart or the liver, maybe the lungs, lower abdomen but the body is a total system."

Ability to understand disease and improve treatment

The defining strength of PET/CT remains its ability to combine functionality and anatomy in a single scan. But there is even more

to it today. "Using different tracers, and more specific tracers, we can understand not only what a disease is, but if it's aggressive or not. And that correlates with the organs and the anatomy, which only PET/CT can do," Conti explains.

It all started with the generic tracer fludeoxyglucose injection F 18 (FDG)^a to measure metabolism. But now, a growing number of novel tracers are available, providing deeper insight into disease function that comes with PET. "This is a great future," says Conti. "Today, we have access to highly specific tracers such as PSMA for prostate cancer, tau and amyloid for dementia and Alzheimer's disease evaluation, and rubidium for cardiac imaging. As the spectrum tracers broadens, so does the potential for earlier, more accurate disease detection and improved treatment monitoring."


Full circle: from pioneer to patient

Last year, Townsend himself underwent a PET/CT scan following the discovery of a suspicious nodule in his left lung. The PET/CT was consistent with an adenocarcinoma that was confirmed by biopsy. Fortunately, it was an early stage 1 tumor that was removed surgically and a 6-month follow-up scan showed no evidence of disease. Reflecting on his own patient experience, Townsend recalled that the imaging team who performed the scan at the University of British Columbia Cancer Centre, Vancouver, Canada, were aware of Townsend's background. The technologist who gave him the injection of FDG quipped, "I guess I don't need to explain the imaging procedure to you, do I?" remembers Townsend, with a smile.

What may the next 25 years bring?

When asked about the next developments in PET/CT, Conti envisions a future full of potential—from widespread use of artificial intelligence to more advanced motion correction, improved speed and image quality, and increased patient comfort. Theranostics and opportunities for more personalized therapy are also on the horizon.

^a Please see Indications and Important Safety Information for Fludeoxyglucose F 18 (¹⁸F FDG) Injection on page 6. For full Prescribing Information, please see pages 8–10.

Biograph Vision Quadra takes its place as the first 106-cm aFOV whole-body scanner with ultra-high sensitivity, for advanced research, clinical flexibility, and improved patient outcomes. The scanner fits traditional PET/CT spaces while enabling dynamic, multi-organ, and low-dose imaging.

Data courtesy of Inselspital, Bern University Hospital, Switzerland.

Fludeoxyglucose F 18 5-10mCi as an IV injection Indications and Usage

Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

- Oncology: For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
- Cardiology: For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
- Neurology: For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.

Important Safety Information

- Radiation Risks: Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker.
- Blood Glucose Abnormalities: In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.
- Adverse Reactions: Hypersensitivity reactions with pruritus, edema and rash have been reported; have emergency resuscitation equipment and personnel immediately available. Full prescribing information for Fludeoxyglucose F 18 Injection can be found at the conclusion of this publication.

Dosage Forms and Strengths

Multiple-dose 30 mL and 50 mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/mL) of Fludeoxyglucose F 18 injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/w ethanolas a stabilizer (approximately 15 to 50 mL volume) for intravenous administration. Fludeoxyglucose F 18 injection is manufactured by Siemens' PETNET Solutions, 810 Innovation Drive, Knoxville, TN 39732

Biograph Trinion.X meets evolving clinical demands with greater speed, sensitivity, and a patient-focused design. The system's ultra-fast 197-picosecond time-of-flightb capability is a key advancement, along with an extended aFOV of up to 48 cm.

And what are his personal hopes for the next 25 years of PET/CT? Conti pauses, then offers two wishes: "More tracers that unlock the full potential of our amazing technology. And that PET/CT becomes more accessible to patients earlier in the care pathway. Right now, a patient needs to have a cancer diagnosis to maybe get a PET/CT scan. I would love a world where PET/CT is routine, where patients receive a PET/CT when there is suspicion of cancer." As for Townsend? His wish echoes

a similar sentiment: that PET/CT technology is widely available to all patients no matter where they live.

The defining strength of PET/CT remains its ability to combine functionality and anatomy in a single scan. With the use of more specific tracers, PET/CT can provide deeper insights into diseases, their aggressiveness, and their correlation with organs and anatomy. Paving the way for earlier, more accurate detection and improved treatment monitoring and working

toward making PET/CT accessible to all patients is an ambition shared by clinicians and researchers alike.

PET/CT served as catalyst for other hybrids of nuclear medicine with anatomical measures, such as in PET/MR. The success of PET/CT commercially encouraged the industry to develop and market other hybrids. The audacity of PET/CT was daunting; its success equally so. The next 25 years will undoubtedly hold more exciting developments. •

For More Information

siemens-healthineers.com/molecular-imaging/pet-ct

References

1 https://content.time.com/time/subscriber/article/0,33009,998685,00.html

Disclaimers

^b Based on measured values on a single system. Data on file.

Biograph Vision, Biograph Vision Quadra, and Biograph Trinion.X are not commercially available in all countries. Future availability of either cannot be guaranteed.

Lead image credit: Sources held in the collections of the Siemens Healthineers MedArchiv (SMA), in Erlangen, and contemporary reports.

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use Fludeoxyglucose F 18 Injection safely and effectively See full prescribing information for Fludeoxyglucose F 18 Injection.

Fludeoxyglucose F 18 Injection, USP For intravenous use

Initial U.S. Approval: 2005

INDICATIONS AND USAGE Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

- Oncology: For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
- Cardiology: For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
- Neurology: For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures (1).

DOSAGE AND ADMINISTRATION

Fludeoxyglucose F 18 Injection emits radiation. Use procedures to minimize radiation exposure. Screen for blood glucose abnormalities.

- In the oncology and neurology settings, instruct patients to fast for 4 to 6 hours prior to the drug's injection. Consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to the drug's administration (5.2).
- In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 grams) prior to the drug's injection facilitates localization of cardiac ischemia (2.3). Aseptically withdraw Fludeoxyglucose F 18

Injection from its container and administer by intravenous injection (2).

FULL PRESCRIBING INFORMATION: CONTENTS*

INDICATIONS AND USAGE

- 1.1 Oncology
- 1.2 Cardiology
- 1.3 Neurology

2 DOSAGE AND ADMINISTRATION

- 2.1 Recommended Dose for Adults
- 2.2 Recommended Dose for
- Pediatric Patients 2.3 Patient Preparation
- Radiation Dosimetry 2.4
- 2.5 Radiation Safety Drug Handling
- 2.6 Drug Preparation and Administration
- 2.7 Imaging Guidelines
- DOSAGE FORMS AND STRENGTHS
- CONTRAINDICATIONS WARNINGS AND PRECAUTIONS
- Radiation Risks
- 5.2 Blood Glucose Abnormalities ADVERSE REACTIONS
- DRUG INTERACTIONS
- **USE IN SPECIFIC POPULATIONS** 8
 - 8.1 Pregnancy

tion (3).

The recommended dose:

- for adults is 5 to 10 mCi (185 to 370 MBq), in all indicated clinical settings (2.1).
- for pediatric patients is 2.6 mCi in the neurology setting (2.2).

Initiate imaging within 40 minutes following drug injection; acquire static emission images 30 to 100 minutes from time of injection (2).

DOSAGE FORMS AND STRENGTHS Multi-dose 30mL and 50mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/ mL) Fludeoxyglucose F 18 Injection and 4.5mg of sodium chloride with 0.1 to 0.5% w/w ethanol as a stabilizer (approximately 15

to 50 mL volume) for intravenous administra-CONTRAINDICATIONS

None.

- WARNINGS AND PRECAUTIONS Radiation risks: use smallest dose neces-
- sary for imaging (5.1). Blood glucose adnormalities: may cause suboptimal imaging (5.2).

ADVERSE REACTIONS

Hypersensitivity reactions have occurred; have emergency resuscitation equipment and personnel immediately available (6).

To report SUSPECTED ADVERSE REACTIONS, contact PETNET Solutions, Inc. at 877-473-8638 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

USE IN SPECIFIC POPULATIONS

- · Lactation: Temporarily discontinue breastfeeding. A lactating woman should pump and discard breastmilk for 9 hours after Fludeoxyglucose F 18 Injection (8.2).
- Pediatric Use: Safety and effectiveness in pediatric patients have not been established in the oncology and cardiology settinas (8.4).

See 17 for PATIENT COUNSELING INFORMATION

Revised: 10/2019

8.2 Lactation

8.4 Pediatric Use

11 DESCRIPTION

- 11.1 Chemical Characteristics
- 11.2 Physical Characteristics

12 CLINICAL PHARMACOLOGY

- 12.1 Mechanism of Action
- 12.2 Pharmacodynamics
- 12.3 Pharmacokinetics

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Muta-genesis, Impairment of Fertility

14 CLINICAL STUDIES

- 14.1 Oncology
- 14.2 Cardiology
- 14.3 Neurology

16 HOW SUPPLIED/STORAGE AND DRUG HANDLING

17 PATIENT COUNSELING INFORMATION

Sections or subsections omitted from the

full prescribing information are not listed.

FULL PRESCRIBING INFORMATION

INDICATIONS AND USAGE

Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings

Oncology 1.1

For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.

For the identification of left ventricular myocardium with residual glucose metabolism

and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.

Neurology

For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures

DOSAGE AND ADMINISTRATION

Fludeoxyglucose F 18 Injection emits radiation. Use procedures to minimize radiation exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].

Recommended Dose for Adults

Within the oncology, cardiology and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection.

2.2 Recommended Dose for Pediatric Patients

Within the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].

2.3 Patient Preparation

- To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study
- Encourage the patient to void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.
- · Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug's injection.
- In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75grams) prior to Fludeoxyglucose F 18 Injection facilitates localization of cardiac ischemia.

Radiation Dosimetry

The estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human² data and using the data published by the International Commission on Radiological Protection⁴ for Fludeoxyglucose 18 F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.

Table 1. Estimated Absorbed Radiation Doses (rem/mCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection						
Organ	Newborn (3.4 kg)	1-year old (9.8 kg)	5-year old (19 kg)	10-year old (32 kg)	15-year old (57 kg)	Adult (70 kg)
Bladder wall ^b	4.3	1.7	0.93	0.60	0.40	0.32
Heart wall	2.4	1.2	0.70	0.44	0.29	0.22
Pancreas	2.2	0.68	0.33	0.25	0.13	0.096
Spleen	2.2	0.84	0.46	0.29	0.19	0.14
Lungs	0.96	0.38	0.20	0.13	0.092	0.064
Kidneys	0.81	0.34	0.19	0.13	0.089	0.074
Ovaries	0.80	0.8	0.19	0.11	0.058	0.053
Uterus	0.79	0.35	0.19	0.12	0.076	0.062
LLI wall *	0.69	0.28	0.15	0.097	0.060	0.051
Liver	0.69	0.31	0.17	0.11	0.076	0.058
Gallbladder wall	0.69	0.26	0.14	0.093	0.059	0.049
Small intestine	0.68	0.29	0.15	0.096	0.060	0.047
ULI wall **	0.67	0.27	0.15	0.090	0.057	0.046
Stomach wall	0.65	0.27	0.14	0.089	0.057	0.047
Adrenals	0.65	0.28	0.15	0.095	0.061	0.048
Testes	0.64	0.27	0.14	0.085	0.052	0.041
Red marrow	0.62	0.26	0.14	0.089	0.057	0.047
Thymus	0.61	0.26	0.14	0.086	0.056	0.044
Thyroid	0.61	0.26	0.13	0.080	0.049	0.039
Muscle	0.58	0.25	0.13	0.078	0.049	0.039
Bone surface	0.57	0.24	0.12	0.079	0.052	0.041
Breast	0.54	0.22	0.11	0.068	0.043	0.034
Skin	0.49	0.20	0.10	0.060	0.037	0.030
Brain	0.29	0.13	0.09	0.078	0.072	0.070
Other tissues	0.59	0.25	0.13	0.083	0.052	0.042

- MIRDOSE 2 software was used to calculate the radiation absorbed dose
- The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
- * LLI = lower large intestine; ** ULI = upper large intestine

2.5 Radiation Safety - Drug Handling

- Use waterproof gloves, effective radiation shielding, and appropriate safety measures
 when handling Fludeoxyglucose F 18 Injection to avoid unnecessary radiation exposure to
 the patient, occupational workers, clinical personnel and other persons.
- Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
- Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Description (11.2)].
- The dose of Fludeoxyglucose F 18 used in a given patient should be minimized consistent
 with the objectives of the procedure, and the nature of the radiation detection devices
 employed.

2.6 Drug Preparation and Administration

- Calculate the necessary volume to administer based on calibration time and dose.
- Aseptically withdraw Fludeoxyglucose F 18 Injection from its container.
- Inspect Fludeoxyglucose F 18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
- Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.
- · Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS.

2.7 Imaging Guidelines

- Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration.
- Acquire static emission images 30 to 100 minutes from the time of injection.

B DOSAGE FORMS AND STRENGTHS

Multiple-dose 30 mL and 50 mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/ mL) of Fludeoxyglucose F 18 Injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/w ethanol as a stabilizer (approximately 15 to 50 mL volume) for intravenous administration.

4 CONTRAINDICATIONS

None.

WARNINGS AND PRECAUTIONS

5.1 Radiation Risks

Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker [see Dosage and Administration (2.5)].

5.2 Blood Glucose Abnormalities

In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.

6 ADVERSE REACTIONS

Hypersensitivity reactions with pruritus, edema and rash have been reported in the post-marketing setting. Have emergency resuscitation equipment and personnel immediately available.

7 DRUG INTERACTIONS

The interactions of Fludeoxyglucose F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Data from published case series and case reports describe Fludeoxyglucose F 18 Injection crossing the placenta with uptake by the fetus (see Data). All radiopharmaceuticals have the potential to cause fetal harm depending on the fetal stage of development and the magnitude of the radiation dose. However, published studies that describe Fludeoxyglucose F 18 Injection use in pregnant women have not identified a risk of drug-associated major birth defects, miscarriage, or adverse maternal or fetal outcomes. If considering Fludeoxyglucose F 18 Injection administration to a pregnant woman, inform the patient about the potential for adverse pregnancy outcomes based on the radiation dose from Fludeoxyglucose F 18 Injection and the gestational timing of exposure. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies are 2-4% and 15-20%, respectively. Data

Human Data

Data from published case series and case reports describe Fludeoxyglucose F 18 Injection crossing the placental barrier and visualization of radioactivity throughout the body of the fetus. The estimated fetal absorbed radiation dose from the maximum labeled dose (370 MBq) of Fludeoxyglucose F 18 was 10 mGy with first trimester exposure to PET alone and 20 mGy with first trimester exposure to PET/CT scan combination. Long-term adverse radiation effects to a child exposed to Fludeoxyglucose F 18 Injection in utero are unknown. No adverse fetal effects or radiation-related risks have been identified for diagnostic procedures involving less than 50 mGy, which represents less than 20 mGy fetal doses.

8.2 Lactation

Risk Summary

A published case report and case series show the presence of Fludeoxyglucose F 18 Injection in human milk following administration. There are no data on the effects of Fludeoxyglucose F 18 Injection on the breastfed infant or the effects on milk production. Exposure of Fludeoxyglucose F 18 Injection to a breastfed infant can be minimized by temporary discontinuation of breastfeeding (see Clinical Considerations). The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for Fludeoxyglucose F 18 Injection, any potential adverse effects on the breastfed child from Fludeoxyglucose F 18 Injection or from the underlying maternal condition.

Clinical Considerations

To decrease radiation exposure to the breastfed infant, advise a lactating woman to pump and discard breastmilk and avoid close (breast) contact with the infant for at least 9 hours after the administration of Fludeoxyglucose F 18 Injection.

3.4 Pediatric Use

The safety and effectiveness of Fludeoxyglucose F 18 Injection in pediatric patients with epilepsy is established on the basis of studies in adult and pediatric patients. In pediatric patients with epilepsy, the recommended dose is 2.6 mCi. The optimal dose adjustment on the basis of body size or weight has not been determined. In the oncology or cardiology settings, the safety and effectiveness of Fludeoxyglucose F 18 Injection have not been established in pediatric patients.

11 DESCRIPTION

11.1 Chemical Characteristics

Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C6H-1118FOs with a molecular weight of 181.26, and has the following chemical structure:

Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless solution. Each mL contains between 0.740 to 7.40GBq (20.0 to 200 mCi) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 4.5 mg of sodium chloride and 0.1 to 0.5% w/w ethanol as a stabilizer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.

11.2 Physical Characteristics

Fluorine F 18 has a physical half-life of 109.7 minutes and decays to Oxygen O 16 (stable) by positron decay. The principal photons useful for imaging are the dual 511 keV "annihilation" gamma photons, that are produced and emitted simultaneously in opposite direction when the positron interacts with an electron (Table 2).

Table 2. Principal Radiation Emission Data for Fluorine F 18					
Radiation/Emission	% Per Disintegration	Mean Energy			
Positron (β+)	96.73	249.8 keV			
Gamma (±)*	193.46	511.0 keV			

*Produced by positron annihilation

From: Kocher, D.C. Radioactive Decay Tables DOE/TIC-I 1026, 89 (1981)

The specific gamma ray constant (point source air kerma coefficient) for fluorine F 18 is 5.7 R/hr/mCi (1.35 x 10⁻⁶ Gy/hr/kBq) at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4 hind head (Pb). The range of attenuation coefficients for this radionuclide as a function of lead shield hickness is shown in Table 3. For example, the interposition of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.

Table 3. Radiation Attenuation of 511 keV Photons by lead (Pb) shielding				
Shield thickness (Pb) mm	Coefficient of attenuation			
0	0.00			
4	0.50			
8	0.25			
13	0.10			
26	0.01			
39	0.001			
52	0.0001			

For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.

Table 4. Physical Decay Chart for Fluorine F 18				
Minutes	Fraction Remaining			
0*	1.000			
15	0.909			
30	0.826			
60	0.683			
110	0.500			
220	0.250			

^{*}calibration time

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Fludeoxyglucose F 18 is a glucose analog that concentrates in cells that rely upon glucose as an energy source, or in cells whose dependence on glucose increases under pathophysiological conditions. Fludeoxyglucose F 18 is transported through the cell membrane by facilitative glucose transporter proteins and is phosphorylated within the cell to [18F] FDG-6-phosphate by the enzyme hexokinase. Once phosphorylated it cannot exit until it is dephosphorylated by glucose-6-phosphatase. Therefore, within a given tissue or pathophysiological process, the retention and clearance of Fludeoxyglucose F 18 reflect a balance involving glucose transporter, hexokinase and glucose-6-phosphatase activities. F 18 is used to assess glucose metabolism.

In comparison to background activity of the specific organ or tissue type, regions of decreased or absent uptake of Fludeoxyglucose F 18 reflect the decrease or absence of glucose metabolism. Regions of increased uptake of Fludeoxyglucose F 18 reflect greater than normal rates of glucose metabolism.

12.2 Pharmacodynamics

Fludeoxyglucose F 18 Injection is rapidly distributed to all organs of the body after intravenous administration. After background clearance of Fludeoxyglucose F 18 Injection, optimal PET imaging is generally achieved between 30 to 40 minutes after administration.

In cancer, the cells are generally characterized by enhanced glucose metabolism partially due to (1) an increase in activity of glucose transporters, (2) an increased rate of phosphorylation activity, (3) a reduction of phosphatase activity or, (4) a dynamic alteration in the balance among all these processes. However, glucose metabolism of cancer as reflected by Fludeoxyglucose F 18 accumulation shows considerable variability. Depending on tumor type, stage, and location, Fludeoxyglucose F 18 accumulation may be increased, normal, or decreased. Also, inflammatory cells can have the same variability of uptake of Fludeoxyglucose F 18.

In the heart, under normal aerobic conditions, the myocardium meets the bulk of its energy requirements by oxidizing free fatty acids. Most of the exogenous glucose taken up by the myocyte is converted into alycogen. However, under ischemic conditions, the oxidation of free fatty acids decreases, exogenous glucose becomes the preferred myocardial substrate, glycolysis is stimulated, and glucose taken up by the myocyte is metabolized immediately instead of being converted into glycogen. Under these conditions, phosphorylated Fludeoxyglucose F 18 accumulates in the myocyte and can be detected with PET

In the brain, cells normally rely on aerobic metabolism. In epilepsy, the glucose metabolism varies. Generally, during a seizure, glucose metabolism increases. Interictally, the seizure focus tends to be hypometabolic.

12.3 Pharmacokinetics

<u>Distribution</u>: In four healthy male volunteers, receiving an intravenous administration of 30 seconds induration, the arterial blood level profile for Fludeoxyglucose F 18 decayed triexponentially. The effective half-life ranges of the three phases were 0.2 to 0.3 minutes, 10 to 13 minutes with a mean and standard deviation (STD) of 11.6 (±) 1.1 min, and 80 to 95 minutes with a mean and STD of 88 (±) 4 min.

Plasma protein binding of Fludeoxyglucose F 18 has not been studied.

Metabolism: Fludeoxyglucose F 18 is transported into cells and phosphorylated to [18F]-FDG-6-phosphate at a rate proportional to the rate of glucose utilization within that tissue. [18F]-FDG-6-phosphate presumably is metabolized to 2-deoxy-2-[18F]fluoro-6-phospho-D-mannose([18F]FDM-6-phosphate).

Fludeoxyglucose F 18 Injection may contain several impurities (e.g., 2-deoxy-2-chloro-Dglucose (CIDG)). Biodistribution and metabolism of CIDG are presumed to be similar to Fludeoxyglucose F 18 and would be expected to result in intracellular formation of 2-deoxy-2-chloro-6-phospho-D-glucose (CIDG-6-phosphate) and 2-deoxy-2-chloro-6-phospho-D-mannose (CIDM-6-phosphate). The phosphorylated deoxyglucose compounds are dephosphorylated and the resulting compounds (FDG, FDM, CIDG, and CIDM) presumably leave cells by passive diffusion. Fludeoxyglucose F 18 and related compounds are cleared from non-cardiac tissues within 3 to 24 hours after administration. Clearance from the cardiac tissue may require more than 96 hours. Fludeoxyglucose F 18 that is not involved in glucose metabolism in any tissue is then excreted in the urine.

Elimination: Fludeoxyglucose F 18 is cleared from most tissues within 24 hours and can be eliminated from the body unchanged in the urine. Within 33 minutes, a mean of 3.9%of the administrated radioactive dose was measured in the urine. The amount of radiation exposure of the urinary bladder at two hours post-administration suggests that 20.6% (mean) of the radioactive dose was present in the bladder.

Special Populations:

The pharmacokinetics of Fludeoxyglucose F 18 Injection have not been studied in renally-impaired, hepatically impaired or pediatric patients. Fludeoxyglucose F 18 is eliminated through the renal system. Avoid excessive radiation exposure to this organ system and adiacent tissues

The effects of fasting, varying blood sugar levels, conditions of glucose intolerance, and diabetes mellitus on Fludeoxyglucose F 18 distribution in humans have not been ascertained [see Warnings and Precautions (5.2)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal studies have not been performed to evaluate the Fludeoxyglucose F 18 Injection carcinogenic potential, mutagenic potential or effects on fertility.

14 CLINICAL STUDIES

14.1 Oncology

The efficacy of Fludeoxyglucose F 18 Injection in positron emission tomography cancer imaging was demonstrated in 16 independent studies. These studies prospectively evaluated the use of Fludeoxyglucose F 18 in patients with suspected or known malignancies, including non-small cell lung cancer, colo-rectal, pancreatic, breast, thyroid, melanoma, Hodgkin's and non-Hodgkin's lymphoma, and various types of metastatic cancers to lung, liver, bone, and axillary nodes. All these studies had at least 50 patients and used pathology as a standard of truth. The Fludeoxyglucose F 18 Injection doses in the studies ranged from 200 MBq to 740 MBq with a median and mean dose of 370 MBq.

In the studies, the diagnostic performance of Fludeoxyglucose F 18 Injection varied with the type of cancer, size of cancer, and other clinical conditions. False negative and false positive scans were observed. Negative Fludeoxyglucose F 18 Injection PET scans do not exclude the diagnosis of cancer. Positive Fludeoxyglucose F 18 Injection PET scans can not replace pathology to establish a diagnosis of cancer. Non-malignant conditions such as fungal infections, inflammatory processes and benign tumors have patterns of increased glucose metabolism that may give rise to false-positive scans. The efficacy of Fludeoxyglucose F 18 Injection PET imaging in cancer screening was not studied.

14.2 Cardiology

The efficacy of Fludeoxyglucose F 18 Injection for cardiac use was demonstrated in ten independent, prospective studies of patients with coronary artery disease and chronic left ventricular systolic dysfunction who were scheduled to undergo coronary revascularization. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection (74 to 370 MBq, 2 to 10 mCi) and perfusion imaging with other diagnostic radiopharmaceuticals. Doses of Fludeoxyglucose F 18 Injection ranged from 74 to 370 MBq (2 to 10 mCi). Segmental, left ventricular, wall-motion assessments of asynergic areas made before revascularization were compared in a blinded manner to assessments made after successful revascularization to identify myocardial segments with functional recovery.

Left ventricular myocardial segments were predicted to have reversible loss of systolic function if they showed Fludeoxyglucose F 18 accumulation and reduced perfusion (i.e., flow-metabolism mismatch). Conversely, myocardial segments were predicted to have irreversible loss of systolic function if they showed reductions in both Fludeoxyglucose F 18 accumulation and perfusion (i.e., matched defects).

Findings of flow-metabolism mismatch in a myocardial segment may suggest that successful revascularization will restore myocardial function in that segment. However, false-positive tests occur regularly, and the decision to have a patient undergo revascularization should not be based on PET findings alone. Similarly, findings of a matched defect in a myocardial segment may suggest that myocardial function will not recover in that segment, even if it is successfully revascularized. However, false-negative tests occur regularly, and the decision to recommend against coronary revascularization, or to recommend a cardiac transplant, should not be based on PET findings alone. The reversibility of segmental dysfunction as predicted with Fludeoxyglucose F 18 PET imaging depends on successful coronary revascularization. Therefore, in patients with a low likelihood of successful revascularization, the diagnostic usefulness of PET imaging with Fludeoxyglucose F 18 Injection is more limited.

14.3 Neurology

In a prospective, open label trial, Fludeoxyglucose F 18 Injection was evaluated in 86 patients with epilepsy. Each patient received a dose of Fludeoxyglucose F 18 Injection in the range of 185 to 370 MBq (5 to 10 mCi). The mean age was 16.4 years (range: 4 months to 58 years; of these, 42 patients were less than 12 years and 16 patients were less than 2 years old). Patients had a known diagnosis of complex partial epilepsy and were under evaluation for surgical treatment of their seizure disorder. Seizure foci had been previously identified on ictal EEGs and sphenoidal EEGs. Fludeoxyglucose F 18 Injection PET imaging confirmed previous diagnostic findings in 16% (14/87) of the patients; in 34% (30/87) of the patients, Fludeoxyglucose F 18 Injection PET images provided new findings. In 32% (27/87), imaging with Fludeoxyglucose F 18 Injection was inconclusive. The impact of these imaging findings on clinical outcomes is not known. Several other studies comparing imaging with Fludeoxyglucose F 18 Injection results to subsphenoidal EEG, MRI and/or surgical findings supported the concept that the degree of hypometabolism corresponds to areas of confirmed epileptogenic foci. The safety and effectiveness of Fludeoxyglucose F 18 Injection to distinguish idiopathic epileptogenic foci from tumors or other brain lesions that may cause seizures have not been established.

HOW SUPPLIED/STORAGE AND DRUG HANDLING

Fludeoxyglucose F 18 Injection is supplied in a multi-dose, capped 30 mL and 50 mL glass vial containing between 0.740 to 7.40 GBg/mL (20 to 200 mCi/mL), of no carrier added 2-deoxy-2-[18F-fluoro-D-glucose, at end of synthesis, in approximately 15 to 50 mL. The contents of each vial are sterile, pyrogen-free and preservative-free. NDC 40028-511-30; 40028-511-50

Receipt, transfer, handling, possession, or use of this product is subject to the radioactive material regulations and licensing requirements of the U.S. Nuclear Regulatory Commission, Agreement States or Licensing States as appropriate.

Store the Fludeoxyglucose F 18 Injection vial upright in a lead shielded container at 25°C (77°F); excursions permitted to 15-30°C (59-86°F).

Store and dispose of Fludeoxyglucose F 18 Injection in accordance with the regulations and a general license, or its equivalent, of an Agreement State or a Licensing State.

The expiration date and time are provided on the container label. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS time.

PATIENT COUNSELING INFORMATION

Instruct patients in procedures that increase renal clearance of radioactivity. Encourage patients to:

- · drink water or other fluids (as tolerated) in the 4 hours before their PET study
- · void as soon as the imaging study is completed and as often as possible thereafter for at

Pregnancy: Advise pregnant women of the risk of fetal exposure to radiation with Fludeoxyglucose F 18 Injection [see Use in Specific Populations (8.1)].

Lactation: Advise lactating women that exposure to Fludeoxyglucose F 18 Injection through breast milk can be minimized by pumping and discarding breast milk and avoiding close (breast) contact with the infant for 9 hours after Fludeoxyglucose F 18 Injection [see Use in Specific Populations (8.2)].

Manufactured and distributed by:

PETNET Solutions, Inc. 810 Innovation Drive Knoxville, TN 37932

PETNET Solutions