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Introduction
Brain tumors are one of the greatest health afflictions  
of our time. Although less prominent than other cancers, 
affecting around 4 in 100,000 people every year globally,  
it puts a great burden on patients, carers, and healthcare 
systems [1]. Recent advances have brought a better  
understanding of brain-tumor biochemistry, as well as the 
introduction of new treatments. However, for the most  
aggressive tumors, many challenges remain – for example, 
average life expectancy for glioblastoma is still under two 
years [1]. The standard of care for aggressive tumors  
includes surgical resection followed by adjuvant treatment 
and rehabilitation [2]. For effective surgical planning, as 
well as for treatment evaluation, neuroimaging methods 
are of primary importance. In this context, precision  

imaging requires accurate assessment of the disorder  
in situ, accounting for the often-observed tumor  
heterogeneity [3], disease progression, presentation after 
initial treatment, and follow-up during treatment cycles 
[4]. Due to its superior soft-tissue contrast and the use of 
non-ionizing radiation, MRI is key to precision imaging.  
MR exams are repeated often, serving as a major source of 
information for individualized therapeutic paths, enabling 
diagnosis, treatment, control, and follow-up tailored to  
the individual characteristics of each patient [5]. 

Magnetic resonance imaging is essential in guiding,  
assisting, and monitoring treatment strategy. Currently, 
structural MR sequences at fields of 1.5T or above are  
the standard for brain-tumor imaging. T1-weighted,  
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1   In Magnetic Resonance Fingerprinting (MRF)1, acquisition parameters are varied at each TR to keep the magnetization in the transient state 
(1A). Next, highly undersampled images are acquired in each TR (1B). For each voxel, the acquired data is compared with the clean simulation 
(1C) to find a match using pattern recognition, then matching results from all voxels are combined to form parameter maps (1D).
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1 Work in progress. MR Fingerprinting is not commercially available in some countries. Due to regulatory reasons its future availability cannot be ensured. Please contact 
your local Siemens Healthineers organization for further details.
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T2-weighted, FLAIR, and diffusion-weighted sequences are 
commonly included in protocols [6]. The images obtained 
with these sequences provide information about lesion  
location, brain tissue infiltration, and lesion cellularity.  
In addition, when contrast media are administered, images 
become sensitive to processes such as blood-brain barrier 
infiltration, a phenomenon typical of biologically aggres-
sive neoplasms. 

When combined with a patient’s clinical history and 
symptoms, these data are commonly used by the radiolo-
gist to perform a differential diagnosis. In addition to a 
confident diagnosis, accurate delineation of tumor margins 
has a primary role in therapy planning [7]. Discriminating 
primary vasogenic edema seen in metastases from the 
edema with neoplastic cellular infiltration seen in glioblas-
toma is important to guide surgery and therapy, with  
a positive impact on patient outcome [8]. To that end, 
many studies have aimed at probing the underlying tumor 
microstructure and differentiating the biological character-
istics of the tissue. Advanced MR imaging techniques  
including diffusion tensor imaging, perfusion, and  
spectroscopy have been used to discriminate glioblastomas 
from brain metastases and identify areas of peritumoral  
infiltrations [9]. More specifically, a multiparametric  
approach combining and comparing the features obtained 
with basic and advanced techniques could improve both 
sensitivity and specificity in identifying areas of gliomas 
that are not contrast enhancing but biologically active 
[10]. For example, applying machine learning algorithms 
on hundreds of features extracted from T1, T2, FLAIR,  
diffusion, and perfusion images has been shown to  
differentiate between vasogenic edema and tumor  
infiltration in patients with high grade gliomas with a  
sensitivity of 86% and a specificity of 89 % [11]. 

Advanced multiparametric procedures, however,  
require long scan times since the acquisition of many  
different basic and advanced sequences is necessary and 
needs specific postprocessing currently performed offline 
by dedicated personnel with specific technical expertise.  
To aid this, many automatic tools for quantitative analysis 
of neoplastic structures have been developed. Despite 
many improvements, this remains a challenge [10], owing 
to the large variability of qualitative MR data commonly 
used in the clinic. Recent advances have allowed automatic 
segmentation of brain MR images, achieving robust  
modelling and segmentation of volumetric data based  
on Artificial Intelligence (AI). Among these methods,  
the AI-Rad Companion for brain MR morphometry from  
Siemens Healthineers recently received 510k and CE  
labeling [11]. 

As AI-based medical computer vision enters the field  
of diagnostic imaging, several tools are needed to achieve 
automatic classification and interpretation of images, or 
tumor growth modelling and prediction. Reliable, repro-

ducible, quantitative image data becomes critical – deter-
mining the accuracy of decision support and the predictive 
quality of derived disease models. Consequently, AI-based 
methods require a rich set of consistent imaging data.  
Such consistency can be obtained with quantitative MRI  
methods. In this regard, conventional multiparametric  
assessments are currently far from entering the clinical  
arena due to lengthy acquisition and the complexity of  
processing, as well as questions over their repeatability  
and reproducibility [12].

MR Fingerprinting in neuro-oncology
New tools for fast multiparametric estimation have  
recently been developed, achieving fast multiparametric 
mapping in a short acquisition time [13]. Among these 
methods, Magnetic Resonance Fingerprinting (MRF) has 
now been developed into a Siemens Healthineers product, 
in partnership with Case Western Reserve University [14]. 
MRF is a framework for multiparametric mapping relying 
on transient-state acquisitions [15], achieving multipara-
metric maps in under 30s. While conventional methods  
for parameter quantification acquire only one parameter  
at a time, MRF uses a holistic approach to the signal,  
including all the relevant information within a single  
model. This makes it possible to derive many individual  
parameters at once in an efficient manner. 

A scheme of a typical MRF algorithm is shown in  
Figure 1. Rather than achieving a magnetization steady-
state, acquisition parameters are purposely varied in each 
TR to generate unique tissue responses. For each pulse,  
an undersampled snapshot is acquired, typically with a 
non-Cartesian k-space acquisition, such as a spiral. In a  
typical MRF implementation, a dictionary is calculated with 
the possible physical responses obtained by simulating the 
transient-state response via the Bloch equations over a 
range of meaningful tissue parameters (T1, T2, PD, etc.) 
and system imperfections (e.g., field inhomogeneity).  
Patterns of acquisition parameters, such as flip angle  
and TR, are optimized to encode specific magnetization  
properties at pixel level. After acquisitions, measured  
signals in individual pixels are compared with calculated 
dictionary elements. This approach, including multiple  
parameters within the same model, has the advantage  
of producing highly accurate maps, with repeatability and 
reproducibility matching or outperforming other literature 
methods yet requiring a much shorter scan time [16, 17]. 
Exemplary 95% confidence intervals for MRF repeatability 
are reported in Figure 2.

Quantitative relaxometry assessments for neuro- 
oncology require accurate and reliable tools for confident 
tissue characterization. Despite initial promise, studies  
on relaxometry in the early days of MRI found significant 
overlap between different tumor grades. The results on  
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In addition to T1 subtraction maps, native T2 mapping  
has also provided important findings. In non-enhancing  
tumors, Response Assessment in Neuro-Oncology (RANO) 
requires assessment of FLAIR abnormalities, which provide 
separate information when compared with the enhance-
ment pattern. Here, objective criteria are difficult to  
establish due to the various sources of pathology, including 
radiation effects, ischemia, edema, and post-operative  
gliosis. Recently, studies have found that objective T2  
measurements are more specific than T2w images for  
tumor identification after anti-angiogenic treatments [21], 
more precisely characterize edema [22], and show a better 
outcome prediction [23]. 

tumor tissue characterization were not consistent between 
studies [18], and more significant diagnosis markers were 
later found with perfusion and diffusion assessments [19]. 
However, precise measurements of relaxometry have  
recently been re-introduced in research studies to  
complement information from more conventional tumor 
imaging protocols, as they provide valuable and objective 
information. For instance, in anti-angiogenic therapy,  
differentiating response from non-response can be  
difficult, as enhancement may be faint or subtle due  
to the decreased vessel wall permeability resulting from 
therapy. T1 subtraction maps have been used in this  
setting to improve inter-observer variability and better 
identify progression [20]. 

2   Graphs show inter-scanner variation of mean T1 and T2 values in all solid matter compartments. Different colors indicate different scanners. 
Symmetric confidence intervals (CIs) of 1.96 standard deviations are shown. For T1 mean value in solid tissue, CI half-width is 3.4%. For T2 it 
is 8.0% [data from [16]].
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3   Image visualization (left) and scatter plot (right) of the different areas of a low grade astrocytoma, showing a neat discrimination of the 
various components based on two-dimensional histograms. Courtesy of Professor Siegfried Trattnig, Medical University of Vienna, Austria.

Infiltration? 
Edema? 
Normal?

Clinical case: Low grade astrocytoma
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New, more efficient approaches such as MRF, capable of 
acquiring multiparametric maps in under 30 seconds, are 
aiding the transition of these findings towards clinical  
protocols. Initial experiences with MRF in neuro-oncology 
studies have shown its ability to distinguish different tissue 
characteristics in both adult and pediatric brain tumors. In 
a group of 31 adult patients with intra-axial brain tumors, 
T2 maps were shown to be significantly different between 
solid tumor regions of lower-grade gliomas and metastases 
[24]. Likewise, T1 maps of Peritumoral White Matter (PWM) 
surrounding lower-grade gliomas differed from maps of 
PWM around glioblastomas [24]. Similar results were  
obtained in a group of 23 pediatric2 and young adult  
patients [25]. Specifically, the authors reported statistically 
significant difference in T1 and T2 between low and high 
grade gliomas as well as between peritumoral and contra-
lateral white matter. These results, although preliminary 
and yet to be replicated in larger studies, build upon  
findings showing the value of relaxometry for discrimi- 
nating different molecular subtypes of tumors and  
evaluating anti-angiogenic treatment [20]. MRF allows this 
information to be obtained with a rapid and reproducible 
acquisition protocol.

Challenges and opportunities  
for MRF in neuro-oncology
In addition to analyses based on a single value of T1  
and T2 within each voxel, studies are looking into more  
sophisticated multicomponent analyses to assess tissue  
microstructure. These include a wealth of information  

related to subtle features such as pore size, distribution, 
and exchange between compartments. While DESPOT 
modelling and diffusion are established methods to 
achieve this [26], they often suffer from long acquisition 
times and complex processing procedures. 

With the recent emergence of fast, multiparametric  
acquisition schemes such as MRF, studying tissue micro-
structure with more realistic acquisition times has become 
feasible. In addition to speed, MRF has other inherent  
advantages for partial-volume modelling. Conventional 
partial-volume modelling of T1 and T2 mapping involves 
multi-exponential fits, which are difficult to perform  
mathematically. In contrast, MRF acquisition generates  
signals from mixtures which are distinct from pure tissue, 
allowing for a better discrimination of microstructural  
components [27]. An example can be seen in Figure 4, 
showing a segmentation of a small-cell lung cancer  
metastasis in the brain using dictionary-based partial  
volume MRF (PV-MRF) and 3D MRF acquisition. Recently,  
a similar approach has also been used to characterize  
developmental changes relating to myelination in  
children from birth2 to five years old [28]. This was done  
by modelling white matter as composed by myelin water, 
intracellular/extracellular water, and free water, allowing  
to generate precise myelination trajectories. Similar  
models could be used to discriminate and follow-up  
myelin integrity in other disease and treatment cases.

4   Segmentation of a small-cell lung cancer metastasis in the brain using dictionary-based PV-MRF and 3D MRF acquisition. Dictionary  
matching enables the use of expanded multi-component models and segmentation of more tissue types than conventional partial-volume 
analysis [from [27]].
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2 MR scanning has not been established as safe for imaging fetuses and infants 
less than two years of age. The responsible physician must evaluate the benefits 
of the MR examination compared to those of other imaging procedures.
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